Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39000495

RESUMEN

Patients with asthma experience elevated rates of mental illness. However, the molecular links underlying such lung-brain crosstalk remain ambiguous. Hypothalamic dysfunction is observed in many psychiatric disorders, particularly those with an inflammatory component due to many hypothalamic regions being unprotected by the blood-brain barrier. To gain a better insight into such neuropsychiatric sequelae, this study investigated gene expression differences in the hypothalamus following lung inflammation (asthma) induction in mice, using RNA transcriptome profiling. BALB/c mice were challenged with either bacterial lipopolysaccharide (LPS, E. coli) or ovalbumin (OVA) allergens or saline control (n = 7 per group), and lung inflammation was confirmed via histological examination of postmortem lung tissue. The majority of the hypothalamus was micro-dissected, and total RNA was extracted for sequencing. Differential expression analysis identified 31 statistically significant single genes (false discovery rate FDR5%) altered in expression following LPS exposure compared to controls; however, none were significantly changed following OVA treatment, suggesting a milder hypothalamic response. When gene sets were examined, 48 were upregulated and 8 were downregulated in both asthma groups relative to controls. REACTOME enrichment analysis suggests these gene sets are involved in signal transduction metabolism, immune response and neuroplasticity. Interestingly, we identified five altered gene sets directly associated with neurotransmitter signaling. Intriguingly, many of these altered gene sets can influence mental health and or/neuroinflammation in humans. These findings help characterize the links between asthma-induced lung inflammation and the brain and may assist in identifying relevant pathways and therapeutic targets for future intervention.


Asunto(s)
Asma , Modelos Animales de Enfermedad , Hipotálamo , Lipopolisacáridos , Pulmón , Ratones Endogámicos BALB C , Transcriptoma , Animales , Asma/genética , Asma/metabolismo , Asma/patología , Hipotálamo/metabolismo , Ratones , Pulmón/metabolismo , Pulmón/patología , Ovalbúmina , Perfilación de la Expresión Génica , Femenino , Regulación de la Expresión Génica
2.
Biochem Pharmacol ; 225: 116265, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38714277

RESUMEN

Relaxin-family peptide 3 receptor (RXFP3) is activated by relaxin-3 in the brain to influence arousal and related functions, such as feeding and stress responses. Two transgenic mouse lines have recently been developed that co-express different fluorophores within RXFP3-expressing neurons: either yellow fluorescent protein (YFP; RXFP3-Cre/YFP mice) or tdTomato (RXFP3-Cre/tdTomato mice). To date, the characteristics of neurons that express RXFP3-associated fluorophores in these mice have only been investigated in the bed nucleus of the stria terminalis and the hypothalamic arcuate nucleus. To better determine the utility of these fluorophore-expressing mice for further research, we characterised the neuroanatomical distribution of fluorophores throughout the brain of these mice and compared this to the published distribution of Rxfp3 mRNA (detected by in situ hybridisation) in wildtype mice. Coronal sections of RXFP3-Cre/YFP (n = 8) and RXFP3-Cre/tdTomato (n = 8) mouse brains were imaged, and the density of fluorophore-expressing cells within various brain regions/nuclei was qualitatively assessed. Comparisons with our previously reported RXFP3 mRNA distribution revealed that of 212 brain regions that contained either fluorophore or RXFP3 mRNA, approximately half recorded densities that were within two qualitative measurements of each other (on a 9-point scale), including hippocampal dentate gyrus and amygdala subregions. However, many brain areas with likely non-authentic, false-positive, or false-negative fluorophore expression were also detected, including the cerebellum. Therefore, this study provides a guide to which brain regions should be prioritized for future study of RXFP3 in these mice, to better understand the neuroanatomy and function of this intriguing, neuronal peptide receptor.


Asunto(s)
Encéfalo , Proteínas Luminiscentes , Ratones Transgénicos , Receptores Acoplados a Proteínas G , Animales , Ratones , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Encéfalo/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Masculino , Colorantes Fluorescentes , Neuronas/metabolismo , Integrasas/genética , Integrasas/metabolismo , Ratones Endogámicos C57BL , Proteína Fluorescente Roja , Proteínas Bacterianas
3.
Emerg Top Life Sci ; 7(3): 339-348, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-37888797

RESUMEN

Tandem repeat DNA sequences constitute a significant proportion of the human genome. While previously considered to be functionally inert, these sequences are now broadly accepted as important contributors to genetic diversity. However, the polymorphic nature of these sequences can lead to expansion beyond a gene-specific threshold, causing disease. More than 50 pathogenic repeat expansions have been identified to date, many of which have been discovered in the last decade as a result of advances in sequencing technologies and associated bioinformatic tools. Commonly utilised diagnostic platforms including Sanger sequencing, capillary array electrophoresis, and Southern blot are generally low throughput and are often unable to accurately determine repeat size, composition, and epigenetic signature, which are important when characterising repeat expansions. The rapid advances in bioinformatic tools designed specifically to interrogate short-read sequencing and the development of long-read single molecule sequencing is enabling a new generation of high throughput testing for repeat expansion disorders. In this review, we discuss some of the challenges surrounding the identification and characterisation of disease-causing repeat expansions and the technological advances that are poised to translate the promise of genomic medicine to individuals and families affected by these disorders.


Asunto(s)
Biología Computacional , Secuencias Repetidas en Tándem , Humanos , Análisis de Secuencia de ADN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA