Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 23255, 2024 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-39370435

RESUMEN

Ocular strabismus, a common condition in the present generation is an absolute risk factor for amblyopia and blinding premorbid visual loss. Despite the availability of new optometry tools with eye-tracking data, the issues persist in attaining accuracy and reliability in diagnosing strabismus. These two concerns are specifically accommodated in this study by the proposed novel approach that involves CNNs with eye-tracking datasets from subjects. The presented work aims to improve the accuracy of diagnostics in ophthalmology utilizing the integration of the further proposed algorithms into an automatic strabismus detection system. For this purpose, the proposed FedCNN model combines the CNN with eXtreme Gradient Boosting (XGBoost) and uses the Gaze deviation (GaDe) images to capture dynamic eye movements. This method tries to make the feature extraction as accurate as possible in its best working state to enhance the diagnosis precision. The model proves to be accurate, reaching 95.2%, which is even more prominent because of the more or less detailed connection layer of the CNN, which is used for the selection of features designated for such tasks of strabismus recognition. The presented method has the potential of shifting the approach to diagnosing diseases of the eyes in more or less half of the patients.


Asunto(s)
Algoritmos , Desprendimiento de Retina , Estrabismo , Humanos , Estrabismo/diagnóstico , Desprendimiento de Retina/diagnóstico , Movimientos Oculares/fisiología , Redes Neurales de la Computación , Tecnología de Seguimiento Ocular , Reproducibilidad de los Resultados , Masculino , Adulto , Femenino
2.
Microsc Res Tech ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39177052

RESUMEN

One of the most popular fruits worldwide is the banana. Accurate identification and categorization of banana diseases is essential for maintaining global fruits security and stakeholder profitability. Four different types of banana leaves exist Healthy, Cordana, Sigatoka, and Pestalotiopsis. These types can be analyzed using four types of vision: RGB, night vision, infrared vision, and thermal vision. This paper presents an intelligent deep augmented learning model composed of VGG19 and passive aggressive classifier (PAC) to classify the four diseases types of bananas under each type of vision. Each vision consisted of 1600 images with a size of (224 × 224). The training-testing approach was used to evaluate the performance of the hybrid model on Kaggle dataset, which was justified by various methods and metrics. The proposed model achieved a remarkable mean accuracy rate of 99.16% for RGB vision, 98.02% for night vision, 96.05% for infrared vision, and 96.10% for thermal vision for training and testing data. Microscopy employed in this research as a validation tool. The microscopic examination of leaves confirmed the presence and extent of the disease, providing ground truth data to validate and refine the proposed model. RESEARCH HIGHLIGHTS: The model can be helpful for internet of things -based drones to identify the large scale of banana leaf-disease detection using drones for images acquisition. Proposed an intelligent deep augmented learning model composed of VGG19 and passive aggressive classifier (PAC) to classify the four diseases types of bananas under each type of vision. The model detected banana leaf disease with a 99.16% accuracy rate for RGB vision, 98.02% accuracy rate for night vision, 96.05% accuracy rate for infrared vision, and 96.10% accuracy rate for thermal vision The model will provide a facility for early disease detection which minimizes crop loss, enhances crop quality, timely decision making, cost saving, risk mitigation, technology adoption, and helps in increasing the yield.

3.
PeerJ Comput Sci ; 10: e2150, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39145242

RESUMEN

Virtual reality (VR) and immersive technology have emerged as powerful tools with numerous applications. VR technology creates a computer-generated simulation that immerses users in a virtual environment, providing a highly realistic and interactive experience. This technology finds applications in various fields, including gaming, healthcare, education, architecture, and training simulations. Understanding user immersion levels in VR is crucial and challenging for optimizing the design of VR applications. Immersion refers to the extent to which users feel absorbed and engrossed in the virtual environment. This research primarily aims to detect user immersion levels in VR using an efficient machine-learning model. We utilized a benchmark dataset based on user experiences in VR environments to conduct our experiments. Advanced deep and machine learning approaches are applied in comparison. We proposed a novel technique called Polynomial Random Forest (PRF) for feature generation mechanisms. The proposed PRF approach extracts polynomial and class prediction probability features to generate a new feature set. Extensive research experiments show that random forest outperformed state-of-the-art approaches, achieving a high immersion level detection rate of 98%, using the proposed PRF technique. We applied hyperparameter optimization and cross-validation approaches to validate the performance scores. Additionally, we utilized explainable artificial intelligence (XAI) to interpret the reasoning behind the decisions made by the proposed model for user immersion level detection in VR. Our research has the potential to revolutionize user immersion level detection in VR, enhancing the design process.

4.
PeerJ Comput Sci ; 10: e2063, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38983191

RESUMEN

Lack of an effective early sign language learning framework for a hard-of-hearing population can have traumatic consequences, causing social isolation and unfair treatment in workplaces. Alphabet and digit detection methods have been the basic framework for early sign language learning but are restricted by performance and accuracy, making it difficult to detect signs in real life. This article proposes an improved sign language detection method for early sign language learners based on the You Only Look Once version 8.0 (YOLOv8) algorithm, referred to as the intelligent sign language detection system (iSDS), which exploits the power of deep learning to detect sign language-distinct features. The iSDS method could overcome the false positive rates and improve the accuracy as well as the speed of sign language detection. The proposed iSDS framework for early sign language learners consists of three basic steps: (i) image pixel processing to extract features that are underrepresented in the frame, (ii) inter-dependence pixel-based feature extraction using YOLOv8, (iii) web-based signer independence validation. The proposed iSDS enables faster response times and reduces misinterpretation and inference delay time. The iSDS achieved state-of-the-art performance of over 97% for precision, recall, and F1-score with the best mAP of 87%. The proposed iSDS method has several potential applications, including continuous sign language detection systems and intelligent web-based sign recognition systems.

5.
PeerJ Comput Sci ; 10: e2008, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38855235

RESUMEN

Brain tumors present a significant medical challenge, demanding accurate and timely diagnosis for effective treatment planning. These tumors disrupt normal brain functions in various ways, giving rise to a broad spectrum of physical, cognitive, and emotional challenges. The daily increase in mortality rates attributed to brain tumors underscores the urgency of this issue. In recent years, advanced medical imaging techniques, particularly magnetic resonance imaging (MRI), have emerged as indispensable tools for diagnosing brain tumors. Brain MRI scans provide high-resolution, non-invasive visualization of brain structures, facilitating the precise detection of abnormalities such as tumors. This study aims to propose an effective neural network approach for the timely diagnosis of brain tumors. Our experiments utilized a multi-class MRI image dataset comprising 21,672 images related to glioma tumors, meningioma tumors, and pituitary tumors. We introduced a novel neural network-based feature engineering approach, combining 2D convolutional neural network (2DCNN) and VGG16. The resulting 2DCNN-VGG16 network (CVG-Net) extracted spatial features from MRI images using 2DCNN and VGG16 without human intervention. The newly created hybrid feature set is then input into machine learning models to diagnose brain tumors. We have balanced the multi-class MRI image features data using the Synthetic Minority Over-sampling Technique (SMOTE) approach. Extensive research experiments demonstrate that utilizing the proposed CVG-Net, the k-neighbors classifier outperformed state-of-the-art studies with a k-fold accuracy performance score of 0.96. We also applied hyperparameter tuning to enhance performance for multi-class brain tumor diagnosis. Our novel proposed approach has the potential to revolutionize early brain tumor diagnosis, providing medical professionals with a cost-effective and timely diagnostic mechanism.

6.
Sci Rep ; 14(1): 7897, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570535

RESUMEN

With easy access to social media platforms, spreading fake news has become a growing concern today. Classifying fake news is essential, as it can help prevent its negative impact on individuals and society. In this regard, an end-to-end framework for fake news detection is developed by utilizing the power of adversarial training to make the model more robust and resilient. The framework is named "ANN: Adversarial News Net," emoticons have been extracted from the datasets to understand their meanings concerning fake news. This information is then fed into the model, which helps to improve its performance in classifying fake news. The performance of the ANN framework is evaluated using four publicly available datasets, and it is found to outperform baseline methods and previous studies after adversarial training. Experiments show that Adversarial Training improved the performance by 2.1% over the Random Forest baseline and 2.4% over the BERT baseline method in terms of accuracy. The proposed framework can be used to detect fake news in real-time, thereby mitigating its harmful effects on society.

7.
PeerJ Comput Sci ; 10: e1902, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660212

RESUMEN

Gastrointestinal diseases cause around two million deaths globally. Wireless capsule endoscopy is a recent advancement in medical imaging, but manual diagnosis is challenging due to the large number of images generated. This has led to research into computer-assisted methodologies for diagnosing these images. Endoscopy produces thousands of frames for each patient, making manual examination difficult, laborious, and error-prone. An automated approach is essential to speed up the diagnosis process, reduce costs, and potentially save lives. This study proposes transfer learning-based efficient deep learning methods for detecting gastrointestinal disorders from multiple modalities, aiming to detect gastrointestinal diseases with superior accuracy and reduce the efforts and costs of medical experts. The Kvasir eight-class dataset was used for the experiment, where endoscopic images were preprocessed and enriched with augmentation techniques. An EfficientNet model was optimized via transfer learning and fine tuning, and the model was compared to the most widely used pre-trained deep learning models. The model's efficacy was tested on another independent endoscopic dataset to prove its robustness and reliability.

8.
Microsc Res Tech ; 87(8): 1862-1888, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38553901

RESUMEN

Breast cancer is a major health threat, with early detection crucial for improving cure and survival rates. Current systems rely on imaging technology, but digital pathology and computerized analysis can enhance accuracy, reduce false predictions, and improve medical care for breast cancer patients. The study explores the challenges in identifying benign and malignant breast cancer lesions using microscopic image datasets. It introduces a low-dimensional multiple-channel feature-based method for breast cancer microscopic image recognition, overcoming limitations in feature utilization and computational complexity. The method uses RGB channels for image processing and extracts features using level co-occurrence matrix, wavelet, Gabor, and histogram of oriented gradient. This approach aims to improve diagnostic efficiency and accuracy in breast cancer treatment. The core of our method is the SqE-DDConvNet algorithm, which utilizes a 3 × 1 convolution kernel, SqE-DenseNet module, bilinear interpolation, and global average pooling to enhance recognition accuracy and training efficiency. Additionally, we incorporate transfer learning with pre-trained models, including mVVGNet16, EfficientNetV2B3, ResNet101V2, and CN2XNet, preserving spatial information and achieving higher accuracy under varying magnification conditions. The method achieves higher accuracy compared to baseline models, including texture and deep semantic features. This deep learning-based methodology contributes to more accurate image classification and unique image recognition in breast cancer microscopic images. RESEARCH HIGHLIGHTS: Introduces a low-dimensional multiple-channel feature-based method for breast cancer microscopic image recognition. Uses RGB channels for image processing and extracts features using level co-occurrence matrix, wavelet, Gabor, and histogram of oriented gradient. Employs the SqE-DDConvNet algorithm for enhanced recognition accuracy and training efficiency. Transfer learning with pre-trained models preserves spatial information and achieves higher accuracy under varying magnification conditions. Evaluates predictive efficacy of transfer learning paradigms within microscopic analysis. Utilizes CNN-based pre-trained algorithms to enhance network performance.


Asunto(s)
Algoritmos , Neoplasias de la Mama , Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador , Microscopía , Humanos , Neoplasias de la Mama/patología , Femenino , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía/métodos , Mama/diagnóstico por imagen , Mama/patología
9.
Funct Integr Genomics ; 24(1): 23, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38305949

RESUMEN

With recent advances in precision medicine and healthcare computing, there is an enormous demand for developing machine learning algorithms in genomics to enhance the rapid analysis of disease disorders. Technological advancement in genomics and imaging provides clinicians with enormous amounts of data, but prediction is still mostly subjective, resulting in problematic medical treatment. Machine learning is being employed in several domains of the healthcare sector, encompassing clinical research, early disease identification, and medicinal innovation with a historical perspective. The main objective of this study is to detect patients who, based on several medical standards, are more susceptible to having a genetic disorder. A genetic disease prediction algorithm was employed, leveraging the patient's health history to evaluate the probability of diagnosing a genetic disorder. We developed a computationally efficient machine learning approach to predict the overall lifespan of patients with a genomics disorder and to classify and predict patients with a genetic disease. The SVM, RF, and ETC are stacked using two-layer meta-estimators to develop the proposed model. The first layer comprises all the baseline models employed to predict the outcomes based on the dataset. The second layer comprises a component known as a meta-classifier. Results from the experiment indicate that the model achieved an accuracy of 90.45% and a recall score of 90.19%. The area under the curve (AUC) for mitochondrial diseases is 98.1%; for multifactorial diseases, it is 97.5%; and for single-gene inheritance, it is 98.8%. The proposed approach presents a novel method for predicting patient prognosis in a manner that is unbiased, accurate, and comprehensive. The proposed approach outperforms human professionals using the current clinical standard for genetic disease classification in terms of identification accuracy. The implementation of stacked will significantly improve the field of biomedical research by improving the anticipation of genetic diseases.


Asunto(s)
Sector de Atención de Salud , Aprendizaje Automático , Humanos , Algoritmos , Bases de Datos Genéticas , Genómica
10.
MethodsX ; 12: 102520, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38179069

RESUMEN

Oil spills are a paramount and immediate challenge affecting marine ecosystems globally. Effective and timely monitoring tools, such as oil detection indices, offer a swift means to track oil spill spread across vast oceanic expanses. Moreover, these indices enhance data clarity, making it more conducive for machine learning and deep learning algorithms. This study leverages the natural seepage occurring around Qaruh Island, Kuwait as a unique context for the spectral analysis of oil spills using Sentinel-2 multispectral imagery due to repeated occurrences in the same region. This research evaluated 859 single band and 455 multichannel combinations to identify the most effective combinations in oil-water separability, employing the Jeffries-Matusita (JM) distance measure as a key metric. Bands 1, 2, 3, 8A, 11, and 12 consistently featured among the top-performing indices combinations B1-B11B1+B11;B1+B2B3+B11;B1+B2B3+B12;B1+B2B3+B8A affirming the significant effect of oil spills on visible, Near-Infrared (NIR), and Shortwave Infrared (SWIR) bands. Notably, the indices developed in this study outperformed those from prior research in terms of suitability to unsupervised classification algorithms. A significant conclusion of this study is that incorporating a higher number of bands in the analysis did not correlate with an increase in JM values, suggesting that the selection of specific, informative bands is more critical than the volume of input data. These findings underscore the indispensable role of Sentinel-2 imagery in environmental investigations and highlight the potential for focused, efficient analysis using strategic band combinations for effective oil spill detection.•This study identified optimized Sentinel-2 band combinations for oil-water separability, benefiting from naturally occurring spills around Qaruh Island.•The proposed indices outperformed the previous indices for oil spill visualization and clustering.•The new indices highlighted the critical role of specific band selection over the volume of input data for effective oil spill detection.

11.
Microsc Res Tech ; 87(1): 78-94, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37681440

RESUMEN

Diabetic retinopathy (DR) is a prevalent cause of global visual impairment, contributing to approximately 4.8% of blindness cases worldwide as reported by the World Health Organization (WHO). The condition is characterized by pathological abnormalities in the retinal layer, including microaneurysms, vitreous hemorrhages, and exudates. Microscopic analysis of retinal images is crucial in diagnosing and treating DR. This article proposes a novel method for early DR screening using segmentation and unsupervised learning techniques. The approach integrates a neural network energy-based model into the Fuzzy C-Means (FCM) algorithm to enhance convergence criteria, aiming to improve the accuracy and efficiency of automated DR screening tools. The evaluation of results includes the primary dataset from the Shiva Netralaya Centre, IDRiD, and DIARETDB1. The performance of the proposed method is compared against FCM, EFCM, FLICM, and M-FLICM techniques, utilizing metrics such as accuracy in noiseless and noisy conditions and average execution time. The results showcase auspicious performance on both primary and secondary datasets, achieving accuracy rates of 99.03% in noiseless conditions and 93.13% in noisy images, with an average execution time of 16.1 s. The proposed method holds significant potential in medical image analysis and could pave the way for future advancements in automated DR diagnosis and management. RESEARCH HIGHLIGHTS: A novel approach is proposed in the article, integrating a neural network energy-based model into the FCM algorithm to enhance the convergence criteria and the accuracy of automated DR screening tools. By leveraging the microscopic characteristics of retinal images, the proposed method significantly improves the accuracy of lesion segmentation, facilitating early detection and monitoring of DR. The evaluation of the method's performance includes primary datasets from reputable sources such as the Shiva Netralaya Centre, IDRiD, and DIARETDB1, demonstrating its effectiveness in comparison to other techniques (FCM, EFCM, FLICM, and M-FLICM) in terms of accuracy in both noiseless and noisy conditions. It achieves impressive accuracy rates of 99.03% in noiseless conditions and 93.13% in noisy images, with an average execution time of 16.1 s.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Humanos , Retinopatía Diabética/diagnóstico por imagen , Retinopatía Diabética/patología , Interpretación de Imagen Asistida por Computador/métodos , Algoritmos , Retina/diagnóstico por imagen , Retina/patología , Análisis por Conglomerados
12.
PeerJ Comput Sci ; 9: e1684, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38077612

RESUMEN

The main cause of stroke is the unexpected blockage of blood flow to the brain. The brain cells die if blood is not supplied to them, resulting in body disability. The timely identification of medical conditions ensures patients receive the necessary treatments and assistance. This early diagnosis plays a crucial role in managing symptoms effectively and enhancing the overall quality of life for individuals affected by the stroke. The research proposed an ensemble machine learning (ML) model that predicts brain stroke while reducing parameters and computational complexity. The dataset was obtained from an open-source website Kaggle and the total number of participants is 3,254. However, this dataset needs a significant class imbalance problem. To address this issue, we utilized Synthetic Minority Over-sampling Technique (SMOTE) and Adaptive Synthetic Sampling (ADAYSN), a technique for oversampling issues. The primary focus of this study centers around developing a stacking and voting approach that exhibits exceptional performance. We propose a stacking ensemble classifier that is more accurate and effective in predicting stroke disease in order to improve the classifier's performance and minimize overfitting problems. To create a final stronger classifier, the study used three tree-based ML classifiers. Hyperparameters are used to train and fine-tune the random forest (RF), decision tree (DT), and extra tree classifier (ETC), after which they were combined using a stacking classifier and a k-fold cross-validation technique. The effectiveness of this method is verified through the utilization of metrics such as accuracy, precision, recall, and F1-score. In addition, we utilized nine ML classifiers with Hyper-parameter tuning to predict the stroke and compare the effectiveness of Proposed approach with these classifiers. The experimental outcomes demonstrated the superior performance of the stacking classification method compared to other approaches. The stacking method achieved a remarkable accuracy of 100% as well as exceptional F1-score, precision, and recall score. The proposed approach demonstrates a higher rate of accurate predictions compared to previous techniques.

13.
Artículo en Inglés | MEDLINE | ID: mdl-37708019

RESUMEN

Changing the human being's lifestyle, has caused, or exacerbated many diseases. One of these diseases is cancer, and among all kind of cancers like, brain and pulmonary; lungs cancer is fatal. The cancers could be detected early to save lives using Computer Aided Diagnosis (CAD) systems. CT scans medical images are one the best images in detecting these tumors in lung that are especially accepted among doctors. However, location and random shape of tumors, and the poor quality of CT scans images are one the biggest challenges for physicians in identifying these tumors. Therefore, deep learning algorithms have been highly regarded by researchers. This paper presents a new method for identifying tumors and pulmonary nodules in CT scans images based on convolution neural network algorithm with which tumor is accurately identified. The active counter algorithm will show the detected tumor. The proposed method is qualitatively measured by the sensitivity assessment criteria and dice similarity criteria. The obtained results with 98.33% accuracy 99.25% validity and 98.18% dice similarity criterion show the superiority of the proposed method.

14.
Diagnostics (Basel) ; 13(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37568852

RESUMEN

Alzheimer's disease is an incurable neurological disorder that leads to a gradual decline in cognitive abilities, but early detection can significantly mitigate symptoms. The automatic diagnosis of Alzheimer's disease is more important due to the shortage of expert medical staff, because it reduces the burden on medical staff and enhances the results of diagnosis. A detailed analysis of specific brain disorder tissues is required to accurately diagnose the disease via segmented magnetic resonance imaging (MRI). Several studies have used the traditional machine-learning approaches to diagnose the disease from MRI, but manual extracted features are more complex, time-consuming, and require a huge amount of involvement from expert medical staff. The traditional approach does not provide an accurate diagnosis. Deep learning has automatic extraction features and optimizes the training process. The Magnetic Resonance Imaging (MRI) Alzheimer's disease dataset consists of four classes: mild demented (896 images), moderate demented (64 images), non-demented (3200 images), and very mild demented (2240 images). The dataset is highly imbalanced. Therefore, we used the adaptive synthetic oversampling technique to address this issue. After applying this technique, the dataset was balanced. The ensemble of VGG16 and EfficientNet was used to detect Alzheimer's disease on both imbalanced and balanced datasets to validate the performance of the models. The proposed method combined the predictions of multiple models to make an ensemble model that learned complex and nuanced patterns from the data. The input and output of both models were concatenated to make an ensemble model and then added to other layers to make a more robust model. In this study, we proposed an ensemble of EfficientNet-B2 and VGG-16 to diagnose the disease at an early stage with the highest accuracy. Experiments were performed on two publicly available datasets. The experimental results showed that the proposed method achieved 97.35% accuracy and 99.64% AUC for multiclass datasets and 97.09% accuracy and 99.59% AUC for binary-class datasets. We evaluated that the proposed method was extremely efficient and provided superior performance on both datasets as compared to previous methods.

15.
Biochem Cell Biol ; 101(6): 550-561, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37473447

RESUMEN

A medical disorder known as diabetic retinopathy (DR) affects people who suffer from diabetes. Many people are visually impaired due to DR. Primary cause of DR in patients is high blood sugar, and it affects blood vessels available in the retinal cell. The recent advancement in deep learning and computer vision methods, and their automation applications can recognize the presence of DR in retinal cells and vessel images. Authors have proposed an attention-based hybrid model to recognize diabetes in early stage to prevent harmful clauses. Proposed methodology uses DenseNet121 architecture for convolution learning and then, the feature vector will be enhanced with channel and spatial attention model. The proposed architecture also simulates binary and multiclass classification to recognize the infection and the spreading of disease. Binary classification recognizes DR images either positive or negative, while multiclass classification represents an infection on a scale of 0-4. Simulation of the proposed methodology has achieved 98.57% and 99.01% accuracy for multiclass and binary classification, respectively. Simulation of the study also explored the impact of data augmentation to make the proposed model robust and generalized. Attention-based deep learning model has achieved remarkable accuracy to detect diabetic infection from retinal cellular images.


Asunto(s)
Aprendizaje Profundo , Diabetes Mellitus , Retinopatía Diabética , Hiperglucemia , Humanos , Retinopatía Diabética/diagnóstico por imagen , Automatización , Neuronas
16.
J Pers Med ; 13(2)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36836415

RESUMEN

The field of medical image processing plays a significant role in brain tumor classification. The survival rate of patients can be increased by diagnosing the tumor at an early stage. Several automatic systems have been developed to perform the tumor recognition process. However, the existing systems could be more efficient in identifying the exact tumor region and hidden edge details with minimum computation complexity. The Harris Hawks optimized convolution network (HHOCNN) is used in this work to resolve these issues. The brain magnetic resonance (MR) images are pre-processed, and the noisy pixels are eliminated to minimize the false tumor recognition rate. Then, the candidate region process is applied to identify the tumor region. The candidate region method investigates the boundary regions with the help of the line segments concept, which reduces the loss of hidden edge details. Various features are extracted from the segmented region, which is classified by applying a convolutional neural network (CNN). The CNN computes the exact region of the tumor with fault tolerance. The proposed HHOCNN system was implemented using MATLAB, and performance was evaluated using pixel accuracy, error rate, accuracy, specificity, and sensitivity metrics. The nature-inspired Harris Hawks optimization algorithm minimizes the misclassification error rate and improves the overall tumor recognition accuracy to 98% achieved on the Kaggle dataset.

17.
Cluster Comput ; : 1-11, 2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36624887

RESUMEN

Rapid development of the Internet of Everything (IoE) and cloud services offer a vital role in the growth of smart applications. It provides scalability with the collaboration of cloud servers and copes with a big amount of collected data for network systems. Although, edge computing supports efficient utilization of communication bandwidth, and latency requirements to facilitate smart embedded systems. However, it faces significant research issues regarding data aggregation among heterogeneous network services and objects. Moreover, distributed systems are more precise for data access and storage, thus machine-to-machine is needed to be secured from unpredictable events. As a result, this research proposed secured data management with distributed load balancing protocol using particle swarm optimization, which aims to decrease the response time for cloud users and effectively maintain the integrity of network communication. It combines distributed computing and shift high cost computations closer to the requesting node to reduce latency and transmission overhead. Moreover, the proposed work also protects the communicating machines from malicious devices by evaluating the trust in a controlled manner. Simulation results revealed a significant performance of the proposed protocol in comparison to other solutions in terms of energy consumption by 20%, success rate by 17%, end-to-end delay by 14%, and network cost by 19% as average in the light of various performance metrics.

18.
Cancers (Basel) ; 15(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36612309

RESUMEN

Explainable Artificial Intelligence is a key component of artificially intelligent systems that aim to explain the classification results. The classification results explanation is essential for automatic disease diagnosis in healthcare. The human respiration system is badly affected by different chest pulmonary diseases. Automatic classification and explanation can be used to detect these lung diseases. In this paper, we introduced a CNN-based transfer learning-based approach for automatically explaining pulmonary diseases, i.e., edema, tuberculosis, nodules, and pneumonia from chest radiographs. Among these pulmonary diseases, pneumonia, which COVID-19 causes, is deadly; therefore, radiographs of COVID-19 are used for the explanation task. We used the ResNet50 neural network and trained the network on extensive training with the COVID-CT dataset and the COVIDNet dataset. The interpretable model LIME is used for the explanation of classification results. Lime highlights the input image's important features for generating the classification result. We evaluated the explanation using radiologists' highlighted images and identified that our model highlights and explains the same regions. We achieved improved classification results with our fine-tuned model with an accuracy of 93% and 97%, respectively. The analysis of our results indicates that this research not only improves the classification results but also provides an explanation of pulmonary diseases with advanced deep-learning methods. This research would assist radiologists with automatic disease detection and explanations, which are used to make clinical decisions and assist in diagnosing and treating pulmonary diseases in the early stage.

19.
ISA Trans ; 132: 61-68, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36241444

RESUMEN

The Internet of Things (IoT) and wireless sensors have collaborated with many real-time environments for the collection and processing of physical data. Mobile networks with sixth-generation (6G) technologies provide support for emerging applications using Connected and Autonomous Vehicles (CAV) and observe critical conditions. Although, autonomous vehicle-based routing solutions have presented significant development toward reliable and inter-vehicle communications. However, there are numerous research obstacles in terms of data delivery and transmission latency due to the unpredictable environment and changing states of IoT sensors. Therefore, this work presents an efficient and trusted autonomous vehicle routing protocol using 6G networks, which aims to guarantee high quality of service and data coverage. Firstly, the proposed protocol establishes a routing process using a simulated annealing optimization technique and improves energy optimization between IoT-based vehicles, and under difficult circumstances, it statistically guarantees the optimal solution. Secondly, it provides a risk-aware security system due to reliable session-oriented communication with network edges among connected vehicles and avoids uncertainties in the autonomous system. The proposed protocol is verified using simulations for varying vehicles and varying iterations that indicates a green communication system for the autonomous system with authenticity and system intelligence.

20.
Sensors (Basel) ; 22(23)2022 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-36501937

RESUMEN

For the monitoring and processing of network data, wireless systems are widely used in many industrial applications. With the assistance of wireless sensor networks (WSNs) and the Internet of Things (IoT), smart grids are being explored in many distributed communication systems. They collect data from the surrounding environment and transmit it with the support of a multi-hop system. However, there is still a significant research gap in energy management for IoT devices and smart sensors. Many solutions have been proposed by researchers to cope with efficient routing schemes in smart grid applications. But, reducing energy holes and offering intelligent decisions for forwarding data are remain major problems. Moreover, the management of network traffic on grid nodes while balancing the communication overhead on the routing paths is an also demanding challenge. In this research work, we propose a secure edge-based energy management protocol for a smart grid environment with the support of multi-route management. It strengthens the ability to predict the data forwarding process and improves the management of IoT devices by utilizing a technique of correlation analysis. Moreover, the proposed protocol increases the system's reliability and achieves security goals by employing lightweight authentication with sink coordination. To demonstrate the superiority of our proposed protocol over the chosen existing work, extensive experiments were performed on various network parameters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA