Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Methods Enzymol ; 686: 297-319, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37532405

RESUMEN

Selective degradation of unnecessary or abnormal proteins by the ubiquitin-proteasome system is an essential part of proteostasis. Ubiquitin ligases recognize substrates of selective protein degradation and modify them with polyubiquitin chains, which mark them for proteasomal degradation. Substrate recognition by ubiquitin ligases often involves degradation signals or degrons, which are typically short linear motifs found in intrinsically disordered regions, e.g., at protein termini. However, specificity in selective protein degradation is generally not well understood, as for most ubiquitin ligases no degrons have been identified thus far. To address this limitation, high-throughput mutagenesis approaches, such as multiplexed protein stability (MPS) profiling, have been developed, enabling systematic surveys of degrons in vivo or allowing to define degron motifs recognized by different ubiquitin ligases. In MPS profiling, thousands of short peptides can be assessed in parallel for their ability to trigger degradation of a fluorescent timer reporter. Here, we describe common types of libraries used to identify and dissect degrons located at protein termini using MPS profiling in budding yeast, and provide protocols for their construction.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteolisis , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
2.
Methods Enzymol ; 686: 321-344, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37532406

RESUMEN

N-terminal protein sequences and their proteolytic processing and modifications influence the stability and turnover of proteins by creating potential degrons for cellular proteolytic pathways. Understanding the impact of genetic perturbations of components affecting the processing of protein N-termini and thereby their stability, requires methods compatible with proteome-wide studies of many N-termini simultaneously. Tandem fluorescent timers (tFT) allow the in vivo measurement of protein turnover completely independent of protein abundance and can be deployed for proteome-wide studies. Here we present a protocol for Multiplexed Protein Stability (MPS) profiling of tFT-libraries encoding large numbers of different protein N-termini fused to tFT in the yeast Saccharomyces cerevisiae. This protocol includes fluorescence cell sorting based profiling of these libraries using a pooling approach. Analysis of the sorted pools is done by using multiplexed deep sequencing, in order to generate a stability index for each N-terminally peptide fused to the tFT reporter, and to evaluate half-life changes across all species represented in the library.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteoma/metabolismo , Proteolisis , Secuencia de Aminoácidos , Estabilidad Proteica , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Life Sci Alliance ; 5(2)2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34764209

RESUMEN

N-terminal acetylation is a prominent protein modification, and inactivation of N-terminal acetyltransferases (NATs) cause protein homeostasis stress. Using multiplexed protein stability profiling with linear ubiquitin fusions as reporters for the activity of the ubiquitin proteasome system, we observed increased ubiquitin proteasome system activity in NatA, but not NatB or NatC mutants. We find several mechanisms contributing to this behavior. First, NatA-mediated acetylation of the N-terminal ubiquitin-independent degron regulates the abundance of Rpn4, the master regulator of the expression of proteasomal genes. Second, the abundance of several E3 ligases involved in degradation of UFD substrates is increased in cells lacking NatA. Finally, we identify the E3 ligase Tom1 as a novel chain-elongating enzyme (E4) involved in the degradation of linear ubiquitin fusions via the formation of branched K11, K29, and K48 ubiquitin chains, independently of the known E4 ligases involved in UFD, leading to enhanced ubiquitination of the UFD substrates.


Asunto(s)
Acetiltransferasa A N-Terminal/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Acetilación , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Acetiltransferasa A N-Terminal/química , Acetiltransferasa A N-Terminal/genética , Regiones Promotoras Genéticas , Unión Proteica , Procesamiento Proteico-Postraduccional , Proteolisis , Ribonucleoproteínas/metabolismo , Transducción de Señal , Especificidad por Sustrato , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA