Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cell ; 184(3): 655-674.e27, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33497611

RESUMEN

Ras GTPase-activating protein-binding proteins 1 and 2 (G3BP1 and G3BP2, respectively) are widely recognized as core components of stress granules (SGs). We report that G3BPs reside at the cytoplasmic surface of lysosomes. They act in a non-redundant manner to anchor the tuberous sclerosis complex (TSC) protein complex to lysosomes and suppress activation of the metabolic master regulator mechanistic target of rapamycin complex 1 (mTORC1) by amino acids and insulin. Like the TSC complex, G3BP1 deficiency elicits phenotypes related to mTORC1 hyperactivity. In the context of tumors, low G3BP1 levels enhance mTORC1-driven breast cancer cell motility and correlate with adverse outcomes in patients. Furthermore, G3bp1 inhibition in zebrafish disturbs neuronal development and function, leading to white matter heterotopia and neuronal hyperactivity. Thus, G3BPs are not only core components of SGs but also a key element of lysosomal TSC-mTORC1 signaling.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , ADN Helicasas/metabolismo , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Esclerosis Tuberosa/metabolismo , Secuencia de Aminoácidos , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Gránulos Citoplasmáticos/efectos de los fármacos , Gránulos Citoplasmáticos/metabolismo , ADN Helicasas/química , Evolución Molecular , Femenino , Humanos , Insulina/farmacología , Proteínas de Membrana de los Lisosomas/metabolismo , Lisosomas/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fenotipo , Proteínas de Unión a Poli-ADP-Ribosa/química , ARN Helicasas/química , Proteínas con Motivos de Reconocimiento de ARN/química , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Pez Cebra/metabolismo
2.
Proc Natl Acad Sci U S A ; 113(16): 4326-31, 2016 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-27051065

RESUMEN

Nuclear factor kappa B (NF-κB) is an inducible transcription factor that plays critical roles in immune and stress responses and is often implicated in pathologies, including chronic inflammation and cancer. Although much has been learned about NF-κB-activating pathways, the specific repression of NF-κB is far less well understood. Here we identified the type I protein arginine methyltransferase 1 (PRMT1) as a restrictive factor controlling TNFα-induced activation of NF-κB. PRMT1 forms a cellular complex with NF-κB through direct interaction with the Rel homology domain of RelA. We demonstrate that PRMT1 methylates RelA at evolutionary conserved R30, located in the DNA-binding L1 loop, which is a critical residue required for DNA binding. Asymmetric R30 dimethylation inhibits the binding of RelA to DNA and represses NF-κB target genes in response to TNFα. Molecular dynamics simulations of the DNA-bound RelA:p50 predicted structural changes in RelA caused by R30 methylation or a mutation that interferes with the stability of the DNA-NF-κB complex. Our findings provide evidence for the asymmetric arginine dimethylation of RelA and unveil a unique mechanism controlling TNFα/NF-κB signaling.


Asunto(s)
Arginina/análogos & derivados , Transducción de Señal/fisiología , Factor de Transcripción ReIA/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Arginina/genética , Arginina/metabolismo , Línea Celular , Humanos , Metilación , Ratones , Ratones Noqueados , Simulación de Dinámica Molecular , Subunidad p50 de NF-kappa B/genética , Subunidad p50 de NF-kappa B/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factor de Transcripción ReIA/genética , Factor de Necrosis Tumoral alfa/genética
3.
J Biol Chem ; 278(38): 36139-47, 2003 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-12853456

RESUMEN

Aberrant folding of the mammalian prion protein (PrP) is linked to prion diseases in humans and animals. We show that during post-translational targeting of PrP to the endoplasmic reticulum (ER) the putative transmembrane domain induces misfolding of PrP in the cytosol and interferes with its import into the ER. Unglycosylated and misfolded PrP with an uncleaved N-terminal signal sequence associates with ER membranes, and, moreover, decreases cell viability. PrP expressed in the cytosol, lacking the N-terminal ER targeting sequence, also adopts a misfolded conformation; however, this has no adverse effect on cell growth. PrP processing, productive ER import, and cellular viability can be restored either by deleting the putative transmembrane domain or by using a N-terminal signal sequence specific for co-translational ER import. Our study reveals that the putative transmembrane domain features in the formation of misfolded PrP conformers and indicates that post-translational targeting of PrP to the ER can decrease cell viability.


Asunto(s)
Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Priones/metabolismo , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos , Animales , Western Blotting , División Celular , Línea Celular , Línea Celular Tumoral , Supervivencia Celular , Citosol/metabolismo , Relación Dosis-Respuesta a Droga , Glicósido Hidrolasas/metabolismo , Glicosilación , Ratones , Modelos Genéticos , Datos de Secuencia Molecular , Mutación , Biosíntesis de Proteínas , Conformación Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas
4.
Traffic ; 4(5): 313-22, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12713659

RESUMEN

N-linked glycans with complex structure have a major role in the biological activity of a wide variety of cell surface and secreted glycoproteins. Here, we show that geldanamycin, an inhibitor of Hsp90, interferes with the formation of complex glycosylated mammalian prion protein (PrPC). Similarly to inhibitors of alpha-mannosidases, geldanamycin stabilized a high mannose PrPC glycoform and prevented the subsequent processing into complex structures. Moreover, a PrP/Grp94 complex could be isolated from geldanamycin-treated cells, suggesting that Grp94 might play a role in the processing of PrPC in the endoplasmic reticulum. Inhibition of complex glycosylation did not interfere with the glycosylphosphatidylinositol (GPI) anchor attachment and cellular trafficking of high mannose PrPC to the outer leaflet of the plasma membrane. In scrapie-infected neuroblastoma cells, however, high mannose PrPC glycoforms were preferred substrates for the formation of PrP-scrapie (PrPSc). Our study reveals that complex glycosylation is dispensable for the cellular trafficking of PrPC, but modulates the formation of PrPSc.


Asunto(s)
Manosa/metabolismo , Proteínas PrPSc/metabolismo , Animales , Benzoquinonas , Inhibidores Enzimáticos/farmacología , Glicosilación/efectos de los fármacos , Proteínas HSP70 de Choque Térmico/metabolismo , Lactamas Macrocíclicas , Proteínas de la Membrana/metabolismo , Ratones , Proteínas PrPSc/efectos de los fármacos , Quinonas/farmacología
5.
J Biol Chem ; 278(17): 14961-70, 2003 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-12556465

RESUMEN

Misfolding of the mammalian prion protein (PrP) is implicated in the pathogenesis of prion diseases. We analyzed wild type PrP in comparison with different PrP mutants and identified determinants of the in vivo folding pathway of PrP. The complete N terminus of PrP including the putative transmembrane domain and the first beta-strand could be deleted without interfering with PrP maturation. Helix 1, however, turned out to be a major determinant of PrP folding. Disruption of helix 1 prevented attachment of the glycosylphosphatidylinositol (GPI) anchor and the formation of complex N-linked glycans; instead, a high mannose PrP glycoform was secreted into the cell culture supernatant. In the absence of a C-terminal membrane anchor, however, helix 1 induced the formation of unglycosylated and partially protease-resistant PrP aggregates. Moreover, we could show that the C-terminal GPI anchor signal sequence, independent of its role in GPI anchor attachment, mediates core glycosylation of nascent PrP. Interestingly, conversion of high mannose glycans to complex type glycans only occurred when PrP was membrane-anchored. Our study indicates a bipartite function of helix 1 in the maturation and aggregation of PrP and emphasizes a critical role of a membrane anchor in the formation of complex glycosylated PrP.


Asunto(s)
Proteínas PrPC/química , Pliegue de Proteína , Procesamiento Proteico-Postraduccional , Animales , Membrana Celular/química , Glicosilación , Glicosilfosfatidilinositoles , Manosa , Ratones , Polisacáridos/biosíntesis , Polisacáridos/química , Proteínas PrPC/biosíntesis , Proteínas PrPC/genética , Proteínas PrPC/metabolismo , Estructura Terciaria de Proteína , Transporte de Proteínas , Transfección , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA