Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Neurobiol ; 61(2): 1140-1156, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37688709

RESUMEN

Neuroinflammation is closely related to prognosis in ischemic stroke. Microglia are the main immune cells in the nervous system. Under physiological conditions, microglia participate in clearance of dead cells, synapse pruning and regulation of neuronal circuits to maintain the overall health of the nervous system. Once ischemic stroke occurs, microglia function in the occurrence and progression of neuroinflammation. Therefore, the regulation of microglia-mediated neuroinflammation is a potential therapeutic strategy for ischemic stroke. The anti-inflammatory activity of gypenosides (GPs) has been confirmed to be related to the activity of microglia in other neurological diseases. However, the role of GPs in neuroinflammation after ischemic stroke has not been studied. In this study, we investigated whether GPs could reduce neuroinflammation by regulating microglia and the underlying mechanism through qRT-PCR and western blot. Results showed that GPs pretreatment mitigated blood-brain barrier (BBB) damage in the mice subjected to middle cerebral artery occlusion (MCAO) and improved motor function. According to the results of immunofluorescence staining, GPs pretreatment alleviated neuroinflammation in MCAO mice by reducing the number of microglia and promoting their phenotypic transformation from M1 to M2. Furthermore, GPs pretreatment reduced the number of astrocytes in the penumbra and inhibited their polarization into the A1 type. We applied oxygen and glucose deprivation (OGD) on BV2 cells to mimic ischemic conditions in vitro and found similar effect as that in vivo. At the molecular level, the STAT-3/HIF1-α and TLR-4/NF-κB/HIF1-α pathways were involved in the anti-inflammatory effects of GPs in vitro and in vivo. Overall, this research indicates that GPs are potential therapeutic agents for ischemic stroke and has important reference significance to further explore the possibility of GPs application in ischemic stroke.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Ratones , Animales , Enfermedades Neuroinflamatorias , Microglía/metabolismo , Isquemia Encefálica/complicaciones , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Isquemia/metabolismo , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/metabolismo , Lesiones Encefálicas/metabolismo , Antiinflamatorios/farmacología , Accidente Cerebrovascular Isquémico/metabolismo , Extractos Vegetales , Gynostemma
2.
Int J Mol Sci ; 23(10)2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35628525

RESUMEN

As carbon-based nanomaterials, water-soluble C60 derivatives have potential applications in various fields of biomedicine. In this study, a water-soluble fullerene C60 derivative bearing alanine residues (Ala-C60) was synthesized. The effects of Ala-C60 on neural stem cells (NSCs) as seed cells were explored. Ala-C60 can promote the proliferation of NSCs, induce NSCs to differentiate into neurons, and inhibit the migration of NSCs. Most importantly, the Ala-C60 can significantly increase the cell viability of NSCs treated with hydrogen peroxide (H2O2). The glutathioneperoxidase (GSH-Px) and superoxide dismutase (SOD) activities and glutathione (GSH) content increased significantly in NSCs treated even by 20 µM Ala-C60. These findings strongly indicate that Ala-C60 has high potential to be applied as a scaffold with NSCs for regeneration in nerve tissue engineering for diseases related to the nervous system.


Asunto(s)
Fulerenos , Células-Madre Neurales , Alanina/farmacología , Proliferación Celular , Células Cultivadas , Fulerenos/farmacología , Peróxido de Hidrógeno/farmacología , Agua/farmacología
3.
Int J Mol Sci ; 23(3)2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35163360

RESUMEN

Scaffold materials, neurotrophic factors, and seed cells are three elements of neural tissue engineering. As well-known self-assembling peptide-based hydrogels, RADA16-I and modified peptides are attractive matrices for neural tissue engineering. In addition to its neuroprotective effects, cerebral dopamine neurotrophic factor (CDNF) has been reported to promote the proliferation, migration, and differentiation of neural stem cells (NSCs). However, the role of RADA16-I combined with CDNF on NSCs remains unknown. First, the effect of RADA16-I hydrogel and CDNF on the proliferation and differentiation of cultured NSCs was investigated. Next, RADA16-I hydrogel and CDNF were microinjected into the lateral ventricle (LV) of middle cerebral artery occlusion (MCAO) rats to activate endogenous NSCs. CDNF promoted the proliferation of NSCs, while RADA16-I induced the neural differentiation of NSCs in vitro. Importantly, both RADA16-I and CDNF promoted the proliferation, migration, and differentiation of endogenous NSCs by activating the ERK1/2 and STAT3 pathways, and CDNF exerted an obvious neuroprotective effect on brain ischemia-reperfusion injury. These findings provide new information regarding the application of the scaffold material RADA16-I hydrogel and the neurotrophic factor CDNF in neural tissue engineering and suggest that RADA16-I hydrogel and CDNF microinjection may represent a novel therapeutic strategy for the treatment of stroke.


Asunto(s)
Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Factores de Crecimiento Nervioso/administración & dosificación , Células-Madre Neurales/citología , Péptidos/administración & dosificación , Daño por Reperfusión/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Infarto de la Arteria Cerebral Media/etiología , Infarto de la Arteria Cerebral Media/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Factores de Crecimiento Nervioso/farmacología , Células-Madre Neurales/efectos de los fármacos , Péptidos/farmacología , Fosforilación/efectos de los fármacos , Ratas , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos
4.
Int J Mol Sci ; 21(4)2020 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-32070035

RESUMEN

Cadherin epidermal growth factor (EGF) laminin G (LAG) seven-pass G-type receptor 1 (CELSR1) is a member of a special subgroup of adhesion G protein-coupled receptors. Although Celsr1 has been reported to be a sensitive gene for stroke, the effect of CELSR1 in ischemic stroke is still not known. Here, we investigated the effect of CELSR1 on neuroprotection, neurogenesis and angiogenesis in middle cerebral artery occlusion (MCAO) rats. The mRNA expression of Celsr1 was upregulated in the subventricular zone (SVZ), hippocampus and ischemic penumbra after cerebral ischemic injury. Knocking down the expression of Celsr1 in the SVZ with a lentivirus significantly reduced the proliferation of neuroblasts, the number of CD31-positive cells, motor function and rat survival and increased cell apoptosis and the infarct volume in MCAO rats. In addition, the expression of p-PKC in the SVZ and peri-infarct tissue was downregulated after ischemia/ reperfusion. Meanwhile, in the dentate gyrus of the hippocampus, knocking down the expression of Celsr1 significantly reduced the proliferation of neuroblasts; however, it had no influence on motor function, cell apoptosis or angiogenesis. These data indicate that CELSR1 has a neuroprotective effect on cerebral ischemia injury by reducing cell apoptosis in the peri-infarct cerebral cortex and promoting neurogenesis and angiogenesis, mainly through the Wnt/PKC pathway.


Asunto(s)
Isquemia Encefálica/genética , Cadherinas/genética , Neurogénesis/genética , Accidente Cerebrovascular/genética , Animales , Encéfalo/metabolismo , Encéfalo/patología , Isquemia Encefálica/patología , Proliferación Celular/genética , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Infarto de la Arteria Cerebral Media/genética , Infarto de la Arteria Cerebral Media/patología , Ventrículos Laterales/metabolismo , Ventrículos Laterales/patología , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Fármacos Neuroprotectores/metabolismo , ARN Mensajero/genética , Ratas , Accidente Cerebrovascular/patología , Vía de Señalización Wnt/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA