Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Acta Pharm Sin B ; 14(4): 1864-1877, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38572114

RESUMEN

Small molecule drugs play a pivotal role in the arsenal of anticancer pharmacological agents. Nonetheless, their small size poses a challenge when directly visualizing their localization, distribution, mechanism of action (MOA), and target engagement at the subcellular level in real time. We propose a strategy for developing triple-functioning drug beacons that seamlessly integrate therapeutically relevant bioactivity, precise subcellular localization, and direct visualization capabilities within a single molecular entity. As a proof of concept, we have meticulously designed and constructed a boronic acid fluorescence drug beacon using coumarin-hemicyanine (CHB). Our CHB design includes three pivotal features: a boronic acid moiety that binds both adenosine triphosphate (ATP) and adenosine diphosphate (ADP), thus depleting their levels and disrupting the energy supply within mitochondria; a positively charged component that targets the drug beacon to mitochondria; and a sizeable conjugated luminophore that emits fluorescence, facilitating the application of structured illumination microscopy (SIM). Our study indicates the exceptional responsiveness of our proof-of-concept drug beacon to ADP and ATP, its efficacy in inhibiting tumor growth, and its ability to facilitate the tracking of ADP and ATP distribution around the mitochondrial cristae. Furthermore, our investigation reveals that the micro-dynamics of CHB induce mitochondrial dysfunction by causing damage to the mitochondrial cristae and mitochondrial DNA. Altogether, our findings highlight the potential of SIM in conjunction with visual drug design as a potent tool for monitoring the in situ MOA of small molecule anticancer compounds. This approach represents a crucial advancement in addressing a current challenge within the field of small molecule drug discovery and validation.

2.
J Am Chem Soc ; 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37023253

RESUMEN

Glucose, a critical source of energy, directly determines the homeostasis of the human body. However, due to the lack of robust imaging probes, the mechanism underlying the changes of glucose homeostasis in the human body remains unclear. Herein, diboronic acid probes with good biocompatibility and high sensitivity were synthesized based on an ortho-aminomethylphenylboronic acid probe, phenyl(di)boronic acid (PDBA). Significantly, by introducing the water-solubilizing group -CN directly opposite the boronic acid group and -COOCH3 or -COOH groups to the ß site of the anthracene in PDBA, we obtained the water-soluble probe Mc-CDBA with sensitive response (F/F0 = 47.8, detection limit (LOD) = 1.37 µM) and Ca-CDBA with the highest affinity for glucose (Ka = 4.5 × 103 M-1). On this basis, Mc-CDBA was used to identify glucose heterogeneity between normal and tumor cells. Finally, Mc-CDBA and Ca-CDBA were used for imaging glucose in zebrafish. Our research provides a new strategy for designing efficient boronic acid glucose probes and powerful new tools for the evaluation of glucose-related diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA