Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Plant Cell ; 34(11): 4232-4254, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36047828

RESUMEN

Maternal-to-filial nutrition transfer is central to grain development and yield. nitrate transporter 1/peptide transporter (NRT1-PTR)-type transporters typically transport nitrate, peptides, and ions. Here, we report the identification of a maize (Zea mays) NRT1-PTR-type transporter that transports sucrose and glucose. The activity of this sugar transporter, named Sucrose and Glucose Carrier 1 (SUGCAR1), was systematically verified by tracer-labeled sugar uptake and serial electrophysiological studies including two-electrode voltage-clamp, non-invasive microelectrode ion flux estimation assays in Xenopus laevis oocytes and patch clamping in HEK293T cells. ZmSUGCAR1 is specifically expressed in the basal endosperm transfer layer and loss-of-function mutation of ZmSUGCAR1 caused significantly decreased sucrose and glucose contents and subsequent shrinkage of maize kernels. Notably, the ZmSUGCAR1 orthologs SbSUGCAR1 (from Sorghum bicolor) and TaSUGCAR1 (from Triticum aestivum) displayed similar sugar transport activities in oocytes, supporting the functional conservation of SUGCAR1 in closely related cereal species. Thus, the discovery of ZmSUGCAR1 uncovers a type of sugar transporter essential for grain development and opens potential avenues for genetic improvement of seed-filling and yield in maize and other grain crops.


Asunto(s)
Grano Comestible , Glucosa , Transportadores de Nitrato , Transportador de Péptidos 1 , Proteínas de Plantas , Sacarosa , Zea mays , Humanos , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Glucosa/metabolismo , Células HEK293 , Transportadores de Nitrato/genética , Transportadores de Nitrato/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sacarosa/metabolismo , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo , Transportador de Péptidos 1/genética , Transportador de Péptidos 1/metabolismo , Transporte Biológico
2.
J Biol Chem ; 296: 100566, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33745971

RESUMEN

Trypanosoma brucei is a species of unicellular parasite that can cause severe diseases in livestock and humans, including African trypanosomiasis and Chagas disease. Adaptation to diverse environments and changes in nutritional conditions is essential for T. brucei to establish an infection when changing hosts or during invasion of different host tissues. One such adaptation is the ability of T. brucei to rapidly switch its energy metabolism from glucose metabolism in the mammalian blood to proline catabolism in the insect stages and vice versa. However, the mechanisms that support the parasite's response to nutrient availability remain unclear. Using RNAseq and qRT-PCR, we investigated the response of T. brucei to amino acid or glucose starvation and found increased mRNA levels of several amino acid transporters, including all genes of the amino acid transporter AAT7-B subgroup. Functional characterization revealed that AAT7-B members are plasma membrane-localized in T. brucei and when expressed in Saccharomyces cerevisiae supported the uptake of proline, alanine, and cysteine, while other amino acids were poorly recognized. All AAT7-B members showed a preference for proline, which is transported with high or low affinity. RNAi-mediated AAT7-B downregulation resulted in a reduction of intracellular proline concentrations and growth arrest under low proline availability in cultured procyclic form parasites. Taken together, these results suggest a role of AAT7-B transporters in the response of T. brucei to proline starvation and proline catabolism.


Asunto(s)
Alanina/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Nutrientes/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/metabolismo , Adaptación Fisiológica/efectos de los fármacos , Transporte Biológico/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Trypanosoma brucei brucei/fisiología
3.
PLoS One ; 16(2): e0246763, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33606697

RESUMEN

Amino acids are delivered into developing wheat grains to support the accumulation of storage proteins in the starchy endosperm, and transporters play important roles in regulating this process. RNA-seq, RT-qPCR, and promoter-GUS assays showed that three amino acid transporters are differentially expressed in the endosperm transfer cells (TaAAP2), starchy endosperm cells (TaAAP13), and aleurone cells and embryo of the developing grain (TaAAP21), respectively. Yeast complementation revealed that all three transporters can transport a broad spectrum of amino acids. RNAi-mediated suppression of TaAAP13 expression in the starchy endosperm did not reduce the total nitrogen content of the whole grain, but significantly altered the composition and distribution of metabolites in the starchy endosperm, with increasing concentrations of some amino acids (notably glutamine and glycine) from the outer to inner starchy endosperm cells compared with wild type. Overexpression of TaAAP13 under the endosperm-specific HMW-GS (high molecular weight glutenin subunit) promoter significantly increased grain size, grain nitrogen concentration, and thousand grain weight, indicating that the sink strength for nitrogen transport was increased by manipulation of amino acid transporters. However, the total grain number was reduced, suggesting that source nitrogen remobilized from leaves is a limiting factor for productivity. Therefore, simultaneously increasing loading of amino acids into the phloem and delivery to the spike would be required to increase protein content while maintaining grain yield.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/metabolismo , Grano Comestible/metabolismo , Triticum/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos Acídicos/genética , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Cromatografía Líquida de Alta Presión , Grano Comestible/crecimiento & desarrollo , Endospermo/metabolismo , Regulación de la Expresión Génica de las Plantas , Glútenes/genética , Glútenes/metabolismo , Espectroscopía de Resonancia Magnética , Nitrógeno/metabolismo , Floema/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Interferencia de ARN , RNA-Seq , Reacción en Cadena en Tiempo Real de la Polimerasa , Triticum/genética , Regulación hacia Arriba
4.
Plant Physiol ; 186(1): 581-598, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-33619553

RESUMEN

Legumes form a symbiosis with rhizobia that convert atmospheric nitrogen (N2) to ammonia and provide it to the plant in return for a carbon and nutrient supply. Nodules, developed as part of the symbiosis, harbor rhizobia that are enclosed in a plant-derived symbiosome membrane (SM) to form an organelle-like structure called the symbiosome. In mature nodules exchanges between the symbionts occur across the SM. Here we characterize Yellow Stripe-like 7 (GmYSL7), a Yellow stripe-like family member localized on the SM in soybean (Glycine max) nodules. It is expressed specifically in infected cells with expression peaking soon after nitrogenase becomes active. Unlike most YSL family members, GmYSL7 does not transport metals complexed with phytosiderophores. Rather, it transports oligopeptides of between four and 12 amino acids. Silencing GmYSL7 reduces nitrogenase activity and blocks infected cell development so that symbiosomes contain only a single bacteroid. This indicates the substrate of YSL7 is required for proper nodule development, either by promoting symbiosome development directly or by preventing inhibition of development by the plant. RNAseq of nodules where GmYSL7 was silenced suggests that the plant initiates a defense response against rhizobia with genes encoding proteins involved in amino acid export downregulated and some transcripts associated with metal homeostasis altered. These changes may result from the decrease in nitrogen fixation upon GmYSL7 silencing and suggest that the peptide(s) transported by GmYSL7 monitor the functional state of the bacteroids and regulate nodule metabolism and transport processes accordingly. Further work to identify the physiological substrate for GmYSL7 will allow clarification of this role.


Asunto(s)
Glycine max/genética , Proteínas de Transporte de Membrana/genética , Fijación del Nitrógeno , Proteínas de Plantas/genética , Rhizobium/fisiología , Transporte Biológico , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Glycine max/metabolismo , Glycine max/microbiología , Simbiosis
5.
Sci Rep ; 10(1): 17219, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-33057137

RESUMEN

The capacity to assimilate carbon and nitrogen, to transport the resultant sugars and amino acids to sink tissues, and to convert the incoming sugars and amino acids into storage compounds in the sink tissues, are key determinants of crop yield. Given that all of these processes have the potential to co-limit growth, multiple genetic interventions in source and sink tissues, plus transport processes may be necessary to reach the full yield potential of a crop. We used biolistic combinatorial co-transformation (up to 20 transgenes) for increasing C and N flows with the purpose of increasing tomato fruit yield. We observed an increased fruit yield of up to 23%. To better explore the reconfiguration of metabolic networks in these transformants, we generated a dataset encompassing physiological parameters, gene expression and metabolite profiling on plants grown under glasshouse or polytunnel conditions. A Sparse Partial Least Squares regression model was able to explain the combination of genes that contributed to increased fruit yield. This combinatorial study of multiple transgenes targeting primary metabolism thus offers opportunities to probe the genetic basis of metabolic and phenotypic variation, providing insight into the difficulties in choosing the correct combination of targets for engineering increased fruit yield.


Asunto(s)
Producción de Cultivos/métodos , Frutas/crecimiento & desarrollo , Frutas/fisiología , Ingeniería Genética/métodos , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/fisiología , Solanum lycopersicum/genética , Solanum lycopersicum/fisiología , Aminoácidos/metabolismo , Transporte Biológico , Metabolismo de los Hidratos de Carbono , Carbono/metabolismo , Solanum lycopersicum/metabolismo , Nitrógeno/metabolismo , Plantas Modificadas Genéticamente/metabolismo
6.
FEBS J ; 285(6): 1012-1023, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29063677

RESUMEN

Trypanosoma brucei comprise the causative agents of sleeping sickness, T. b. gambiense and T. b. rhodesiense, as well as the livestock-pathogenic T. b. brucei. The parasites are transmitted by the tsetse fly and occur exclusively in sub-Saharan Africa. T. brucei are not only lethal pathogens but have also become model organisms for molecular parasitology. We focus here on membrane transport proteins of T. brucei, their contribution to homeostasis and metabolism in the context of a parasitic lifestyle, and their pharmacological role as potential drug targets or routes of drug entry. Transporters and channels in the plasma membrane are attractive drug targets as they are accessible from the outside. Alternatively, they can be exploited to selectively deliver harmful substances into the trypanosome's interior. Both approaches require the targeted transporter to be essential: in the first case to kill the trypanosome, in the second case to prevent drug resistance due to loss of the transporter. By combining functional and phylogenetic analyses, we were mining the T. brucei predicted proteome for transporters of pharmacological significance. Here, we review recent progress in the identification of transporters of lipid precursors, amino acid permeases and ion channels in T. brucei.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/metabolismo , Tripanosomiasis Africana/parasitología , Animales , Antiprotozoarios/farmacología , Humanos , Insectos Vectores/parasitología , Filogenia , Proteínas Protozoarias/antagonistas & inhibidores , Trypanosoma brucei brucei/clasificación , Trypanosoma brucei brucei/genética , Tripanosomiasis Africana/tratamiento farmacológico , Moscas Tse-Tse/parasitología
7.
PLoS One ; 12(12): e0188219, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29244877

RESUMEN

CLC type anion transport proteins are homo-dimeric or hetero-dimeric with an integrated transport function in each subunit. We have identified and partially characterized three members of this family named TbVCL1, TbVCL2 and TbVCL3 in Trypanosoma brucei. Among the human CLC family members, the T. brucei proteins display highest similarity to CLC-6 and CLC-7. TbVCL1, but not TbVCL2 and TbVCL3 is able to complement growth of a CLC-deficient Saccharomyces cerevisiae mutant. All TbVCL-HA fusion proteins localize intracellulary in procyclic form trypanosomes. TbVCL1 localizes close to the Golgi apparatus and TbVCL2 and TbVCL3 to the endoplasmic reticulum. Upon expression in Xenopus oocytes, all three proteins induce similar outward rectifying chloride ion currents. Currents are sensitive to low concentrations of DIDS, insensitive to the pH in the range 5.4 to 8.4 and larger in nitrate than in chloride medium.


Asunto(s)
Canales de Cloruro/genética , Retículo Endoplásmico/metabolismo , Estadios del Ciclo de Vida/fisiología , Proteínas Protozoarias/genética , Saccharomyces cerevisiae/metabolismo , Trypanosoma brucei brucei/metabolismo , Ácido 4,4'-Diisotiocianostilbeno-2,2'-Disulfónico/farmacología , Animales , Canales de Cloruro/antagonistas & inhibidores , Canales de Cloruro/metabolismo , Cloruros/metabolismo , Retículo Endoplásmico/ultraestructura , Femenino , Expresión Génica , Prueba de Complementación Genética , Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Humanos , Transporte Iónico , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Nitratos/metabolismo , Oocitos/citología , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Técnicas de Placa-Clamp , Multimerización de Proteína , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/metabolismo , Saccharomyces cerevisiae/genética , Trypanosoma brucei brucei/crecimiento & desarrollo , Trypanosoma brucei brucei/ultraestructura , Xenopus laevis
8.
Mol Plant ; 10(11): 1449-1460, 2017 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-29032248

RESUMEN

Ammonium uptake in plant roots is mediated by AMT/MEP/Rh-type ammonium transporters. Out of five AMTs being expressed in Arabidopsis roots, four AMT1-type transporters contribute to ammonium uptake, whereas no physiological function has so far been assigned to the only homolog belonging to the MEP subfamily, AMT2;1. Based on the observation that under ammonium supply, the transcript levels of AMT2;1 increased and its promoter activity shifted preferentially to the pericycle, we assessed the contribution of AMT2;1 to xylem loading. When exposed to 15N-labeled ammonium, amt2;1 mutant lines translocated less tracer to the shoots and contained less ammonium in the xylem sap. Moreover, in an amt1;1 amt1;2 amt1;3 amt2;1 quadruple mutant (qko), co-expression of AMT2;1 with either AMT1;2 or AMT1;3 significantly enhanced 15N translocation to shoots, indicating a cooperative action between AMT2;1 and AMT1 transporters. Under N deficiency, proAMT2;1-GFP lines showed enhanced promoter activity predominantly in cortical root cells, which coincided with elevated ammonium influx conferred by AMT2;1 at millimolar substrate concentrations. Our results indicate that in addition to contributing moderately to root uptake in the low-affinity range, AMT2;1 functions mainly in root-to-shoot translocation of ammonium, depending on its cell-type-specific expression in response to the plant nutritional status and to local ammonium gradients.


Asunto(s)
Compuestos de Amonio/metabolismo , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Transporte Biológico , Regulación de la Expresión Génica de las Plantas , Nitrógeno/metabolismo , Raíces de Plantas/genética , Brotes de la Planta/genética , Xilema/metabolismo
9.
FASEB J ; 31(10): 4649-4660, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28679527

RESUMEN

Trypanosoma brucei, protozoan parasites that cause human African trypanosomiasis (HAT), depend on ornithine uptake and metabolism by ornithine decarboxylase (ODC) for survival. Indeed, ODC is the target of the WHO "essential medicine" eflornithine, which is antagonistic to another anti-HAT drug, suramin. Thus, ornithine uptake has important consequences in T. brucei, but the transporters have not been identified. We describe these amino acid transporters (AATs). In a heterologous expression system, TbAAT10-1 is selective for ornithine, whereas TbAAT2-4 transports both ornithine and histidine. These AATs are also necessary to maintain intracellular ornithine and polyamine levels in T. brucei, thereby decreasing sensitivity to eflornithine and increasing sensitivity to suramin. Consistent with competition for histidine, high extracellular concentrations of this amino acid phenocopied a TbAAT2-4 genetic defect. Our findings established TbAAT10-1 and TbAAT2-4 as the parasite ornithine transporters, one of which can be modulated by histidine, but both of which affect sensitivity to important anti-HAT drugs.-Macedo, J. P., Currier, R. B., Wirdnam, C., Horn, D., Alsford, S., Rentsch, D. Ornithine uptake and the modulation of drug sensitivity in Trypanosoma brucei.


Asunto(s)
Antineoplásicos/farmacología , Ornitina/metabolismo , Trypanosoma brucei brucei/efectos de los fármacos , Tripanosomiasis Africana/metabolismo , Animales , Eflornitina/farmacología , Humanos , Ornitina Descarboxilasa/efectos de los fármacos , Ornitina Descarboxilasa/genética , Poliaminas/metabolismo , Trypanosoma brucei brucei/aislamiento & purificación , Tripanosomiasis Africana/tratamiento farmacológico
10.
PLoS One ; 12(1): e0168775, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28045943

RESUMEN

For Trypanosoma brucei arginine and lysine are essential amino acids and therefore have to be imported from the host. Heterologous expression in Saccharomyces cerevisiae mutants identified cationic amino acid transporters among members of the T. brucei AAAP (amino acid/auxin permease) family. TbAAT5-3 showed high affinity arginine uptake (Km 3.6 ± 0.4 µM) and high selectivity for L-arginine. L-arginine transport was reduced by a 10-times excess of L-arginine, homo-arginine, canavanine or arginine-ß-naphthylamide, while lysine was inhibitory only at 100-times excess, and histidine or ornithine did not reduce arginine uptake rates significantly. TbAAT16-1 is a high affinity (Km 4.3 ± 0.5 µM) and highly selective L-lysine transporter and of the compounds tested, only L-lysine and thialysine were competing for L-lysine uptake. TbAAT5-3 and TbAAT16-1 are expressed in both procyclic and bloodstream form T. brucei and cMyc-tagged proteins indicate localization at the plasma membrane. RNAi-mediated down-regulation of TbAAT5 and TbAAT16 in bloodstream form trypanosomes resulted in growth arrest, demonstrating that TbAAT5-mediated arginine and TbAAT16-mediated lysine transport are essential for T. brucei. Growth of induced RNAi lines could partially be rescued by supplementing a surplus of arginine or lysine, respectively, while addition of both amino acids was less efficient. Single and double RNAi lines indicate that additional low affinity uptake systems for arginine and lysine are present in T. brucei.


Asunto(s)
Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Arginina/metabolismo , Lisina/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/metabolismo , Animales , Arginina/análogos & derivados , Canavanina/metabolismo , Homoarginina/metabolismo , Humanos , Cinética , Oocitos/metabolismo , Sistemas de Lectura Abierta , Filogenia , Interferencia de ARN , Saccharomyces cerevisiae/genética , Xenopus laevis
11.
PLoS Pathog ; 12(4): e1005494, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27043018

RESUMEN

Amino acid sensing is an intracellular function that supports nutrient homeostasis, largely through controlled release of amino acids from lysosomal pools. The intracellular pathogen Leishmania resides and proliferates within human macrophage phagolysosomes. Here we describe a new pathway in Leishmania that specifically senses the extracellular levels of arginine, an amino acid that is essential for the parasite. During infection, the macrophage arginine pool is depleted due to its use to produce metabolites (NO and polyamines) that constitute part of the host defense response and its suppression, respectively. We found that parasites respond to this shortage of arginine by up-regulating expression and activity of the Leishmania arginine transporter (LdAAP3), as well as several other transporters. Our analysis indicates the parasite monitors arginine levels in the environment rather than the intracellular pools. Phosphoproteomics and genetic analysis indicates that the arginine-deprivation response is mediated through a mitogen-activated protein kinase-2-dependent signaling cascade.


Asunto(s)
Leishmania donovani/fisiología , Macrófagos/metabolismo , Animales , Arginina/metabolismo , Línea Celular , Humanos , Proteínas de Transporte de Membrana/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fagosomas/metabolismo , Poliaminas/metabolismo
12.
Curr Biol ; 25(23): 3126-31, 2015 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-26628011

RESUMEN

Essential amino acids cannot be synthesized by humans and animals. They often are limiting in plant-derived foods and determine the nutritional value of a given diet. Seeds and fruits often represent the harvestable portion of plants. In order to improve the amino acid composition of these tissues, it is indispensable to understand how these substrates are transported within the plant. Amino acids result from nitrogen assimilation, which often occurs in leaves, the source tissue. They are transported via the vasculature, the xylem, and the phloem into the seeds, the so-called sink tissue, where they are stored or consumed. In seeds, several tissues are symplasmically isolated, i.e., not connected by plasmodesmata, channels in the cell walls that enable a cytoplasmic continuum in plants. Consequently, amino acids must be exported from cells into the apoplast and re-imported many times to support seed development. Several amino acid importers are known, but exporters remained elusive. Here, we characterize four members of the plant-specific UmamiT transporter family from Arabidopsis, related to the amino acid facilitator SIAR1 and the vacuolar auxin transporter WAT1. We show that the proteins transport amino acids along their (electro)chemical potential across the plasma membrane. In seeds, they are found in tissues from which amino acids are exported. Loss-of-function mutants accumulate high levels of free amino acids in fruits and produce smaller seeds. Our results strongly suggest a crucial role for the UmamiTs in amino acid export and possibly a means to improve yield quality.


Asunto(s)
Aminoácidos/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Transporte de Membrana/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Distribución Tisular
13.
Sci Rep ; 5: 16289, 2015 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-26549185

RESUMEN

Long N-terminal tails of amino acid transporters are known to act as sensors of the internal pool of amino acids and as positive regulators of substrate flux rate. In this study we establish that N-termini of amino acid transporters can also determine substrate specificity. We show that due to alternative trans splicing, the human pathogen Leishmania naturally expresses two variants of the proline/alanine transporter, one 18 amino acid shorter than the other. We demonstrate that the longer variant (LdAAP24) translocates both proline and alanine, whereas the shorter variant (∆18LdAAP24) translocates just proline. Remarkably, co-expressing the hydrophilic N-terminal peptide of the long variant with ∆18LdAAP24 was found to recover alanine transport. This restoration of alanine transport could be mediated by a truncated N-terminal tail, though truncations exceeding half of the tail length were no longer functional. Taken together, the data indicate that the first 18 amino acids of the negatively charged N-terminal LdAAP24 tail are required for alanine transport and may facilitate the electrostatic interactions of the entire negatively charged N-terminal tail with the positively charged internal loops in the transmembrane domain, as this mechanism has been shown to underlie regulation of substrate flux rate for other transporters.


Asunto(s)
Sistemas de Transporte de Aminoácidos/genética , Leishmania/genética , Leishmaniasis/genética , Alanina/genética , Alanina/metabolismo , Empalme Alternativo/genética , Secuencia de Aminoácidos/genética , Humanos , Leishmania/patogenicidad , Leishmaniasis/parasitología , Leishmaniasis/patología , Prolina/genética , Prolina/metabolismo , Especificidad por Sustrato
14.
Front Plant Sci ; 6: 785, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26483804

RESUMEN

Glutamate derived γ-aminobutyric acid (GABA) is synthetized in the cytosol prior to delivery to the mitochondria where it is catabolized via the TCA cycle. GABA accumulates under various environmental conditions, but an increasing number of studies show its involvement at the crossroad between C and N metabolism. To assess the role of GABA in modulating cellular metabolism, we exposed seedlings of A. thaliana GABA transporter gat1 mutant to full nutrition medium and media deficient in C and N combined with feeding of different concentrations (0.5 and 1 mM) of exogenous GABA. GC-MS based metabolite profiling showed an expected effect of medium composition on the seedlings metabolism of mutant and wild type alike. That being said, a significant interaction between GAT1 deficiency and medium composition was determined with respect to magnitude of change in relative amino acid levels. The effect of exogenous GABA treatment on metabolism was contingent on both the medium and the genotype, leading for instance to a drop in asparagine under full nutrition and low C conditions and glucose under all tested media, but not to changes in GABA content. We additionally assessed the effect of GAT1 deficiency on the expression of glutamate metabolism related genes and genes involved in abiotic stress responses. These results suggest a role for GAT1 in GABA-mediated metabolic alterations in the context of the C-N equilibrium of plant cells.

15.
BMC Plant Biol ; 14: 222, 2014 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-25168432

RESUMEN

BACKGROUND: Despite its extensive use as a nitrogen fertilizer, the role of urea as a directly accessible nitrogen source for crop plants is still poorly understood. So far, the physiological and molecular aspects of urea acquisition have been investigated only in few plant species highlighting the importance of a high-affinity transport system. With respect to maize, a worldwide-cultivated crop requiring high amounts of nitrogen fertilizer, the mechanisms involved in the transport of urea have not yet been identified. The aim of the present work was to characterize the high-affinity urea transport system in maize roots and to identify the high affinity urea transporter. RESULTS: Kinetic characterization of urea uptake (<300 µM) demonstrated the presence in maize roots of a high-affinity and saturable transport system; this system is inducible by urea itself showing higher Vmax and Km upon induction. At molecular level, the ORF sequence coding for the urea transporter, ZmDUR3, was isolated and functionally characterized using different heterologous systems: a dur3 yeast mutant strain, tobacco protoplasts and a dur3 Arabidopsis mutant. The expression of the isolated sequence, ZmDUR3-ORF, in dur3 yeast mutant demonstrated the ability of the encoded protein to mediate urea uptake into cells. The subcellular targeting of DUR3/GFP fusion proteins in tobacco protoplasts gave results comparable to the localization of the orthologous transporters of Arabidopsis and rice, suggesting a partial localization at the plasma membrane. Moreover, the overexpression of ZmDUR3 in the atdur3-3 Arabidopsis mutant showed to complement the phenotype, since different ZmDUR3-overexpressing lines showed either comparable or enhanced 15[N]-urea influx than wild-type plants. These data provide a clear evidence in planta for a role of ZmDUR3 in urea acquisition from an extra-radical solution. CONCLUSIONS: This work highlights the capability of maize plants to take up urea via an inducible and high-affinity transport system. ZmDUR3 is a high-affinity urea transporter mediating the uptake of this molecule into roots. Data may provide a key to better understand the mechanisms involved in urea acquisition and contribute to deepen the knowledge on the overall nitrogen-use efficiency in crop plants.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Raíces de Plantas/metabolismo , Zea mays/metabolismo , Arabidopsis , Proteínas Fluorescentes Verdes , Proteínas de Transporte de Membrana/aislamiento & purificación , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Protoplastos , Análisis de Secuencia de ARN , Nicotiana , Transportadores de Urea
16.
Biochem J ; 463(1): 9-18, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24988048

RESUMEN

Amino acid transporters are crucial for parasite survival since the cellular metabolism of parasitic protozoa depends on the up-take of exogenous amino acids. Amino acid transporters are also of high pharmacological relevance because they may mediate uptake of toxic amino acid analogues. In the present study we show that the eflornithine transporter AAT6 from Trypanosoma brucei (TbAAT6) mediates growth on neutral amino acids when expressed in Saccharomyces cerevisiae mutants. The transport was electrogenic and further analysed in Xenopus laevis oocytes. Neutral amino acids, proline analogues, eflornithine and acivicin induced inward currents. For proline, glycine and tryptophan the apparent affinities and maximal transport rates increased with more negative membrane potentials. Proline-induced currents were dependent on pH, but not on sodium. Although proline represents the primary energy source of T. brucei in the tsetse fly, down-regulation of TbAAT6-expression by RNAi showed that in culture TbAAT6 is not essential for growth of procyclic form trypanosomes in the presence of glucose or proline as energy source. TbAAT6-RNAi lines of both bloodstream and procyclic form trypanosomes showed reduced susceptibility to eflornithine, whereas the sensitivity to acivicin remained unchanged, indicating that acivicin enters the cell by more than one transporter.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Eflornitina/farmacocinética , Proteínas Protozoarias/metabolismo , Tripanocidas/farmacocinética , Trypanosoma brucei brucei/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/genética , Aminoácidos/genética , Aminoácidos/metabolismo , Animales , Transporte Biológico Activo/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Resistencia a Medicamentos/efectos de los fármacos , Resistencia a Medicamentos/genética , Eflornitina/farmacología , Inhibidores Enzimáticos/farmacología , Concentración de Iones de Hidrógeno , Isoxazoles/farmacología , Potenciales de la Membrana/efectos de los fármacos , Proteínas Protozoarias/genética , Tripanocidas/farmacología , Trypanosoma brucei brucei/genética , Xenopus
18.
Sci Rep ; 4: 5055, 2014 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-24852366

RESUMEN

Growth, morphogenesis and function of roots are influenced by the concentration and form of nutrients present in soils, including low molecular mass inorganic N (IN, ammonium, nitrate) and organic N (ON, e.g. amino acids). Proteins, ON of high molecular mass, are prevalent in soils but their possible effects on roots have received little attention. Here, we investigated how externally supplied protein of a size typical of soluble soil proteins influences root development of axenically grown Arabidopsis. Addition of low to intermediate concentrations of protein (bovine serum albumen, BSA) to IN-replete growth medium increased root dry weight, root length and thickness, and root hair length. Supply of higher BSA concentrations inhibited root development. These effects were independent of total N concentrations in the growth medium. The possible involvement of phytohormones was investigated using Arabidopsis with defective auxin (tir1-1 and axr2-1) and ethylene (ein2-1) responses. That no phenotype was observed suggests a signalling pathway is operating independent of auxin and ethylene responses. This study expands the knowledge on N form-explicit responses to demonstrate that ON of high molecular mass elicits specific responses.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Biomasa , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Albúmina Sérica Bovina/metabolismo , Animales , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Bovinos , Etilenos/farmacología , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/farmacología , Nitratos/farmacología , Fenotipo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/metabolismo , Receptores de Superficie Celular/metabolismo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Transducción de Señal
19.
Trends Plant Sci ; 19(1): 5-9, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24055139

RESUMEN

Members of the plant NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER (NRT1/PTR) family display protein sequence homology with the SLC15/PepT/PTR/POT family of peptide transporters in animals. In comparison to their animal and bacterial counterparts, these plant proteins transport a wide variety of substrates: nitrate, peptides, amino acids, dicarboxylates, glucosinolates, IAA, and ABA. The phylogenetic relationship of the members of the NRT1/PTR family in 31 fully sequenced plant genomes allowed the identification of unambiguous clades, defining eight subfamilies. The phylogenetic tree was used to determine a unified nomenclature of this family named NPF, for NRT1/PTR FAMILY. We propose that the members should be named accordingly: NPFX.Y, where X denotes the subfamily and Y the individual member within the species.


Asunto(s)
Proteínas de Transporte de Anión/clasificación , Proteínas de Transporte de Membrana/clasificación , Plantas/genética , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Transportadores de Nitrato , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
20.
Mol Biochem Parasitol ; 190(1): 16-22, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23747277

RESUMEN

Choline is an essential nutrient for eukaryotic cells, where it is used as precursor for the synthesis of choline-containing phospholipids, such as phosphatidylcholine (PC). According to published data, Trypanosoma brucei parasites are unable to take up choline from the environment but instead use lyso-phosphatidylcholine as precursor for choline lipid synthesis. We now show that T. brucei procyclic forms in culture readily incorporate [(3)H]-labeled choline into PC, indicating that trypanosomes express a transporter for choline at the plasma membrane. Characterization of the transport system in T. brucei procyclic and bloodstream forms shows that uptake of choline is independent of sodium and potassium ions and occurs with a Km in the low micromolar range. In addition, we demonstrate that choline uptake can be blocked by the known choline transport inhibitor, hemicholinium-3, and by synthetic choline analogs that have been established as anti-malarials. Together, our results show that T. brucei parasites express an uptake system for choline and that exogenous choline is used for PC synthesis.


Asunto(s)
Colina/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Trypanosoma brucei brucei/crecimiento & desarrollo , Trypanosoma brucei brucei/metabolismo , Tripanosomiasis Africana/parasitología , Animales , Transporte Biológico , Bovinos , Proteínas de Transporte de Membrana/genética , Fosfatidilcolinas/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA