Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Ethnopharmacol ; 329: 118154, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38614259

RESUMEN

ETHNOPHARMACOLOGY RELEVANCE: The plants of Amaryllidaceae family, such as Amaryllis belladonna L., have been used as herbal remedies for thousands of years to address various disorders, including diseases that might today be identified as cancer. AIM OF THE STUDY: The objective of this work was to evaluate the potential of three Amaryllidaceae alkaloids against four cancer cell lines. MATERIAL AND METHODS: The alkaloids lycorine, 1-O-acetylcaranine, and montanine were evaluated in vitro against colon adenocarcinoma cell line (HCT-116) and breast carcinoma cell lines (MCF-7, MDAMB231, and Hs578T). Computational experiments (target prediction and molecular docking) were conducted to gain a deeper comprehension of possible interactions between these alkaloids and potential targets associated with these tumor cells. RESULTS: Montanine presented the best results against HCT-116, MDAMB231, and Hs578T cell lines, while lycorine was the most active against MCF-7. In alignment with the target prediction outcomes and existing literature, four potential targets were chosen for the molecular docking analysis: CDK8, EGFR, ER-alpha, and dCK. The docking scores revealed two potential targets for the alkaloids with scores similar to co-crystallized inhibitors and substrates: CDK8 and dCK. A visual analysis of the optimal docked configurations indicates that the alkaloids may interact with some key residues in contrast to the other docked compounds. This observation implies their potential to bind effectively to both targets. CONCLUSIONS: In vitro and in silico results corroborate with data literature suggesting the Amaryllidaceae alkaloids as interesting molecules with antitumoral properties, especially montanine, which showed the best in vitro results against colorectal and breast carcinoma. More studies are necessary to confirm the targets and pharmaceutical potential of montanine against these cancer cell lines.


Asunto(s)
Alcaloides de Amaryllidaceae , Antineoplásicos Fitogénicos , Simulación del Acoplamiento Molecular , Humanos , Alcaloides de Amaryllidaceae/farmacología , Alcaloides de Amaryllidaceae/química , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Línea Celular Tumoral , Células MCF-7 , Amaryllidaceae/química , Células HCT116 , Simulación por Computador , Fenantridinas/farmacología , Fenantridinas/química , Isoquinolinas
2.
Nat Microbiol ; 9(2): 336-345, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38316926

RESUMEN

microbeMASST, a taxonomically informed mass spectrometry (MS) search tool, tackles limited microbial metabolite annotation in untargeted metabolomics experiments. Leveraging a curated database of >60,000 microbial monocultures, users can search known and unknown MS/MS spectra and link them to their respective microbial producers via MS/MS fragmentation patterns. Identification of microbe-derived metabolites and relative producers without a priori knowledge will vastly enhance the understanding of microorganisms' role in ecology and human health.


Asunto(s)
Metabolómica , Espectrometría de Masas en Tándem , Humanos , Metabolómica/métodos , Bases de Datos Factuales
3.
Res Sq ; 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37577622

RESUMEN

MicrobeMASST, a taxonomically-informed mass spectrometry (MS) search tool, tackles limited microbial metabolite annotation in untargeted metabolomics experiments. Leveraging a curated database of >60,000 microbial monocultures, users can search known and unknown MS/MS spectra and link them to their respective microbial producers via MS/MS fragmentation patterns. Identification of microbial-derived metabolites and relative producers, without a priori knowledge, will vastly enhance the understanding of microorganisms' role in ecology and human health.

4.
Chem Biol Interact ; 371: 110342, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36634904

RESUMEN

DNA-targeting agents have a significant clinical use, although toxicity remains an issue that plays against their widespread application. Understanding the mechanism of action and DNA damage response elicited by such compounds might contribute to the improvement of their use in anticancer chemotherapy. In a previous study, our research group characterized a new DNA-targeting agent - pradimicin-IRD. Since DNA-targeting agents and DNA repair are close-related subjects, the present study used in silico-modelling and a transcriptomic approach seeking to characterize the DNA repair pathways activated in HCT 116 cells following pradimicin-IRD treatment. Molecular docking analysis showed pradimicin-IRD as a DNA intercalating agent and a potential inhibitor of DNA-binding proteins. Furthermore, the transcriptomic study highlighted DNA repair functions related to genes modulated by pradimicin-IRD, such as nucleotide excision repair, telomeres maintenance and double-strand break repair. When validating these functions, PCNA protein levels decreased after exposure to pradimicin. Furthermore, molecular docking analysis suggested DNA-pradimicin-PCNA interaction. In addition, hTERT and POLH showed reduced mRNA levels after 6 h of treatment with pradimicin-IRD. Moreover, POLH-deficient cells displayed higher resistance to pradimicin-IRD than POLH-proficient cells and the compound prevented formation of the POLH/DNA complex (molecular docking). Since the modulation of DNA repair genes by pradimicin-IRD is TP53-independent, unlike doxorubicin, dissimilarities between the mechanism of action and the DNA damage response of pradimicin-IRD and doxorubicin open new insights for further studies of pradimicin-IRD as a new antineoplastic compound.


Asunto(s)
Antineoplásicos , Humanos , Simulación del Acoplamiento Molecular , Antígeno Nuclear de Célula en Proliferación , Antineoplásicos/farmacología , Reparación del ADN , ADN , Doxorrubicina/farmacología , Daño del ADN
5.
Life Sci ; 308: 120911, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36030982

RESUMEN

AIMS: Colorectal cancer (CRC) is a very heterogeneous disease. One of its hallmarks is the dysregulation of protein kinases, which leads to molecular events related to carcinogenesis. Hence, kinase inhibitors have been developed and are a new strategy with promising potential for CRC therapy. This study aims to explore AD80, a multikinase inhibitor, as a drug option for CRC, with evaluation of the PI3K/AKT/mTOR and MAPK (ERK1/2) status of CRC cells' panel and the cytotoxicity of AD80 in those cells, as well as in normal colon cells. MAIN METHODS: Cellular and molecular mechanisms, such as clonogenicity, cell cycle, morphology, protein and mRNA expression, were investigated in CRC cells after AD80 exposure. KEY FINDINGS: Results show that PI3K/AKT/mTOR and MAPK signaling pathways are upregulated in CRC cellular models, with increased phosphorylation of mTOR, P70S6K, S6RP, 4EBP1, and ERK1/2. Hence, AD80 selectively reduces cell viability of CRC cells. Therefore, the antitumor mechanisms of AD80, such as clonogenicity inhibition (reduction of colony number and size), G2/M arrest (increased G2/M population, and CDKN1B mRNA expression), DNA damage (increased H2AX and ERK1/2 phosphorylation, and CDKN1A and GADD45A mRNA expression), apoptosis (increased PARP1 cleavage, and BAX, PMAIP1, BBC3 mRNA expression) and inhibition of S6RP phosphorylation were validated in CRC model. SIGNIFICANCE: Our findings reinforce kinases as promising cancer therapeutic targets for the treatment of colorectal cancer, suggesting AD80 as a drug candidate.


Asunto(s)
Neoplasias Colorrectales , Proteínas Quinasas S6 Ribosómicas 70-kDa , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/patología , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/metabolismo , Proteína X Asociada a bcl-2
6.
J Mol Histol ; 53(4): 669-677, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35701706

RESUMEN

Osteoclasts are specialized cells that degrade and resorb bone. Bisphosphonates (BPs) are drugs with well-known capacity to inhibit the resorption of mineralized tissues. Nitrogen-containing BPs, like alendronate (ALN) and zoledronic acid (ZA), inactivate osteoclast activity mostly by alterations on the cytoskeleton architecture of the cell. In this study, we used an in vitro model to test the hypothesis that bisphosphonates may have inhibitory effects on the osteoclastogenesis and osteoclast activity after the therapy was discontinued. Primary osteoclasts were generated from mouse bone marrow in media supplemented with 1,25-dihydroxyvitamin D3 and cultivated over bones pre-treated with ALN and ZA. The pre-saturation of the bone slices with bisphosphonates did not affect cell viability. We found, however, that by disrupting the gene expression of RANKL and OPG the osteoclastogenesis and resorption activity of osteoclasts was significantly disturbed. These inhibitory effects were confirmed by scanning electron microscopy resorption assay, assessment of osteoclast ultrastructure, and by gene expression analysis of TRAP and Cathepsin K. In conclusion, ALN and ZA adhered to the bone matrix reduced the osteoclast activity in vitro.


Asunto(s)
Resorción Ósea , Osteogénesis , Animales , Resorción Ósea/tratamiento farmacológico , Resorción Ósea/metabolismo , Huesos/metabolismo , Difosfonatos/metabolismo , Difosfonatos/farmacología , Ratones , Osteoclastos/metabolismo , Ácido Zoledrónico/metabolismo , Ácido Zoledrónico/farmacología
7.
Environ Pollut ; 300: 118983, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35151812

RESUMEN

Worldwide pesticide usage was estimated in up to 3.5 million tons in 2020. The number of approved products varies among different countries, however, in Brazil, there are nearly 5000 of such products available. Among them, insecticides correspond to a group of mounting importance for controlling crop pests and disease-associated vectors in public health. Unfortunately, resistance to commercially approved insecticides is commonly observed, limiting the use of these products. Thus, the search for more effective and environmentally friendly products is both a challenge and a necessity since several insecticides are no longer allowed in many countries. In this review, we discuss the historical strategies used in the development of modern insecticides, including chemical structure alterations, mechanism of action and their impact on insecticidal activity. The environmental impact of each pesticide class is also discussed, with persistence data and activity on non-target organisms, along with the human toxicological effect. By tracing the historical route of discovery and development of blockbuster pesticides like DDT, pyrethroids and organophosphates, we also aim to categorize and relate the successful chemical alterations and novel pesticide development strategies that resulted in safer alternatives. A brief discussion on the Brazilian registration procedure and a perspective of insecticides currently approved in the country was also included.


Asunto(s)
Insecticidas , Plaguicidas , Piretrinas , Ambiente , Humanos , Resistencia a los Insecticidas , Insecticidas/toxicidad , Organofosfatos , Plaguicidas/farmacología
8.
Molecules ; 26(23)2021 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-34885944

RESUMEN

Isolated from the marine bacteria Serinicoccus sp., seriniquinone (SQ1) has been characterized by its selective activity in melanoma cell lines marked by its modulation of human dermcidin and induction of autophagy and apoptosis. While an active lead, the lack of solubility of SQ1 in both organic and aqueous media has complicated its preclinical evaluation. In response, our team turned its effort to explore analogues with the goal of returning synthetically accessible materials with comparable selectivity and activity. The analogue SQ2 showed improved solubility and reached a 30-40-fold greater selectivity for melanoma cells. Here, we report a detailed comparison of the activity of SQ1 and SQ2 in SK-MEL-28 and SK-MEL-147 cell lines, carrying the top melanoma-associated mutations, BRAFV600E and NRASQ61R, respectively. These studies provide a definitive report on the activity, viability, clonogenicity, dermcidin expression, autophagy, and apoptosis induction following exposure to SQ1 or SQ2. Overall, these studies showed that SQ1 and SQ2 demonstrated comparable activity and modulation of dermcidin expression. These studies are further supported through the evaluation of a panel of basal expression of key-genes related to autophagy and apoptosis, providing further insight into the role of these mutations. To explore this rather as a survival or death mechanism, autophagy inhibition sensibilized BRAF mutants to SQ1 and SQ2, whereas the opposite happened to NRAS mutants. These data suggest that the seriniquinones remain active, independently of the melanoma mutation, and suggest the future combination of their application with inhibitors of autophagy to treat BRAF-mutated tumors.


Asunto(s)
Antineoplásicos/farmacología , GTP Fosfohidrolasas/genética , Melanoma/tratamiento farmacológico , Proteínas de la Membrana/genética , Proteínas Proto-Oncogénicas B-raf/genética , Quinonas/farmacología , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Descubrimiento de Drogas , Humanos , Melanoma/genética , Mutación/genética , Quinonas/química , Serina/análogos & derivados , Serina/farmacología
9.
Open Biol ; 11(11): 210224, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34753320

RESUMEN

Gap junctions mediate communication between adjacent cells and are fundamental to the development and homeostasis in multicellular organisms. In invertebrates, gap junctions are formed by transmembrane proteins called innexins. Gap junctions allow the passage of small molecules through an intercellular channel, between a cell and another adjacent cell. The dipteran Rhynchosciara americana has contributed to studying the biology of invertebrates and the study of the interaction and regulation of genes during biological development. Therefore, this paper aimed to study the R. americana innexin-2 by molecular characterization, analysis of the expression profile and cellular localization. The molecular characterization results confirm that the message is from a gap junction protein and analysis of the expression and cellular localization profile shows that innexin-2 can participate in many physiological processes during the development of R. americana.


Asunto(s)
Conexinas/genética , Conexinas/metabolismo , Nematocera/crecimiento & desarrollo , Análisis de Secuencia de ADN/métodos , Animales , Mapeo Cromosómico , Biología Computacional , Conexinas/química , Regulación del Desarrollo de la Expresión Génica , Proteínas de Insectos/química , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Modelos Moleculares , Nematocera/genética , Nematocera/metabolismo , Cromosomas Politénicos/genética , Conformación Proteica , Distribución Tisular
10.
Planta Med ; 87(1-02): 49-70, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33142347

RESUMEN

"Blue Amazon" is used to designate the Brazilian Economic Exclusive Zone, which covers an area comparable in size to that of its green counterpart. Indeed, Brazil flaunts a coastline spanning 8000 km through tropical and temperate regions and hosting part of the organisms accredited for the country's megadiversity status. Still, biodiversity may be expressed at different scales of organization; besides species inventory, genetic characteristics of living beings and metabolic expression of their genes meet some of these other layers. These metabolites produced by terrestrial creatures traditionally and lately added to by those from marine organisms are recognized for their pharmaceutical value, since over 50% of small molecule-based medicines are related to natural products. Nonetheless, Brazil gives a modest contribution to the field of pharmacology and even less when considering marine pharmacology, which still lacks comprehensive in-depth assessments toward the bioactivity of marine compounds so far. Therefore, this review examined the last 40 years of Brazilian natural products research, focusing on molecules that evidenced anticancer potential-which represents ~ 15% of marine natural products isolated from Brazilian species. This review discusses the most promising compounds isolated from sponges, cnidarians, ascidians, and microbes in terms of their molecular targets and mechanisms of action. Wrapping up, the review delivers an outlook on the challenges that stand against developing groundbreaking natural products research in Brazil and on a means of surpassing these matters.


Asunto(s)
Biodiversidad , Productos Biológicos , Organismos Acuáticos , Productos Biológicos/farmacología , Brasil
11.
Eur J Pharmacol ; 888: 173465, 2020 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-32814079

RESUMEN

Melanoma is a type of skin cancer with an elevated incidence of metastasis and chemoresistance. Such features hamper treatment success of these neoplasms, demanding the search for new therapeutic options. Using a two-step resin-based approach, we recently demonstrated that cytotoxic prodiginines bind to the inhibitor of apoptosis protein, survivin. Herein, we explore the role of survivin in melanoma and whether its modulation is related to the antimelanoma properties of three cytotoxic prodiginines (prodigiosin, cyclononylprodigiosin, and nonylprodigiosin) isolated from marine bacteria. In melanoma patients and cell lines, survivin is overexpressed, and higher levels negatively impact survival. All three prodiginines caused a decrease in cell growth with reduced cytotoxicity after 24 h compared to 72 h treatment, suggesting that low concentrations promote cytostatic effects in SK-Mel-19 (BRAF mutant) and SK-Mel-28 (BRAF mutant), but not in SK-Mel-147 (NRAS mutant). An increase in G1 population was observed after 24 h treatment with prodigiosin and cyclononylprodigiosin in SK-Mel-19. Further studies indicate that prodigiosin induced apoptosis and DNA damage, as detected by increased caspase-3 cleavage and histone H2AX phosphorylation, further arguing for the downregulation of survivin. Computer simulations suggest that prodigiosin and cyclononylprodigiosin bind to the BIR domain of survivin. Moreover, knockdown of survivin increased long-term toxicity of prodigiosin, as observed by reduced clonogenic capacity, but did not alter short-term cytotoxicity. In summary, prodiginine treatment provoked cytostatic rather than cytotoxic effects, cell cycle arrest at G0/G1 phase, induction of apoptosis and DNA damage, downregulation of survivin, and decreased clonogenic capacity in survivin knockdown cells.


Asunto(s)
Melanoma/metabolismo , Prodigiosina/análogos & derivados , Prodigiosina/farmacología , Survivin/antagonistas & inhibidores , Survivin/biosíntesis , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Daño del ADN/efectos de los fármacos , Daño del ADN/fisiología , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/fisiología , Humanos , Melanoma/tratamiento farmacológico , Prodigiosina/uso terapéutico , Survivin/genética
12.
Front Chem ; 8: 110, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32195221

RESUMEN

The TBX2 transcription factor plays critical roles during embryonic development and it is overexpressed in several cancers, where it contributes to key oncogenic processes including the promotion of proliferation and bypass of senescence. Importantly, based on compelling biological evidences, TBX2 has been considered as a potential target for new anticancer therapies. There has therefore been a substantial interest to identify molecules with TBX2-modulatory activity, but no such substance has been found to date. Here, we adopt a targeted approach based on a reverse-affinity procedure to identify the ability of chromomycins A5 (CA5) and A6 (CA6) to interact with TBX2. Briefly, a TBX2-DNA-binding domain recombinant protein was N-terminally linked to a resin, which in turn, was incubated with either CA5 or CA6. After elution, bound material was analyzed by UPLC-MS and CA5 was recovered from TBX2-loaded resins. To confirm and quantify the affinity (KD) between the compounds and TBX2, microscale thermophoresis analysis was performed. CA5 and CA6 modified the thermophoretic behavior of TBX2, with a KD in micromolar range. To begin to understand whether these compounds exerted their anti-cancer activity through binding TBX2, we next analyzed their cytotoxicity in TBX2 expressing breast carcinoma, melanoma and rhabdomyosarcoma cells. The results show that CA5 was consistently more potent than CA6 in all tested cell lines with IC50 values in the nM range. Of the cancer cell types tested, the melanoma cells were most sensitive. The knockdown of TBX2 in 501mel melanoma cells increased their sensitivity to CA5 by up to 5 times. Furthermore, inducible expression of TBX2 in 501mel cells genetically engineered to express TBX2 in the presence of doxycycline, were less sensitive to CA5 than the control cells. Together, the data presented in this study suggest that, in addition to its already recognized DNA-binding properties, CA5 may be binding the transcription factor TBX2, and it can contribute to its cytotoxic activity.

13.
Br J Pharmacol ; 177(1): 3-27, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31621891

RESUMEN

Marine natural products have proven, over the last half-century, to be effective biological modulators. These molecules have revealed new targets for cancer therapy as well as dissimilar modes of action within typical classes of drugs. In this scenario, innovation from marine-based pharmaceuticals has helped advance cancer chemotherapy in many aspects, as most of these are designated as first-in-class drugs. Here, by examining the path from discovery to development of clinically approved drugs of marine origin for cancer treatment-cytarabine (Cytosar-U®), trabectedin (Yondelis®), eribulin (Halaven®), brentuximab vedotin (Adcetris®), and plitidepsin (Aplidin®)- together with those in late clinical trial phases-lurbinectedin, plinabulin, marizomib, and plocabulin-the present review offers a critical analysis of the contributions given by these new compounds to cancer pharmacotherapy.


Asunto(s)
Antineoplásicos/uso terapéutico , Productos Biológicos/uso terapéutico , Descubrimiento de Drogas/métodos , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/aislamiento & purificación , Productos Biológicos/aislamiento & purificación , Ensayos Clínicos como Asunto/métodos , Citarabina/aislamiento & purificación , Citarabina/uso terapéutico , Furanos/aislamiento & purificación , Furanos/uso terapéutico , Humanos , Cetonas/aislamiento & purificación , Cetonas/uso terapéutico , Neoplasias/patología , Poríferos , Trabectedina/aislamiento & purificación , Trabectedina/uso terapéutico
14.
Biochem Pharmacol ; 168: 38-47, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31228463

RESUMEN

DNA-damaging agents are widely used in cancer therapy; however, their use is limited by dose-related toxicities, as well as the development of drug resistance. Drug discovery is essential to overcome these limitations and offer novel therapeutic options. In a previous study by our research group, pradimicin-IRD-a new polycyclic antibiotic produced by the actinobacteria Amycolatopsis sp.-displayed antimicrobial and potential anticancer activities. In the present study, cytotoxic activity was further confirmed in a panel of five colon cancer, including those with mutation in TP53 and KRAS, the most common ones observed in cancer colon patients. While all tested colon cancer cells were sensitive to pradimicin-IRD treatment with IC50 in micromolar range, non-tumor fibroblasts were significantly less sensitive (p < 0.05). The cellular and molecular mechanism of action of pradimicin-IRD was then investigated in the colorectal cancer cell line HCT 116. Pradimicin-IRD presented antitumor effects occurring after at least 6 h of exposure. Pradimicin-IRD induced statistically significant DNA damage (γH2AX and p21), apoptosis (PARP1 and caspase 3 cleavage) and cell cycle arrest (reduced Rb phosphorylation, cyclin A and cyclin B expression) markers. In accordance with these results, pradimicin-IRD increased cell populations in the subG1 and G0/G1 phases of the cell cycle. Additionally, mass spectrometry analysis indicated that pradimicin-IRD interacted with the DNA double strand. In summary, pradimicin-IRD exhibits multiple antineoplastic activities-including DNA damage, cell cycle arrest, reduction of clonal growth and apoptosis-in the HCT 116 cell line. Furthermore, pradimicin-IRD displays a TP53-independent regulation of p21 expression in HCT 116 TP53-/-, HT-29, SW480, and Caco-2 cells. This exploratory study identified novel targets for pradimicin-IRD and provided insights for its potential anticancer activity as a DNA-damaging agent.


Asunto(s)
Antraciclinas/farmacología , Antineoplásicos/farmacología , Neoplasias del Colon/genética , Daño del ADN , Antraciclinas/uso terapéutico , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Células CACO-2 , Puntos de Control del Ciclo Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , ADN/metabolismo , Descubrimiento de Drogas/métodos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Células HCT116 , Células HT29 , Humanos , Concentración 50 Inhibidora
15.
Cell Biol Int ; 42(1): 95-104, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28906033

RESUMEN

Clinical data published in recent years have demonstrated positive effects of collagen hydrolysate (CH) on skin aging clinical signs. CH use as food supplement has a long history; however, few studies have addressed the underlying purpose of CH on the cellular and molecular biology of skin cells that could elucidate clinical improvement findings. Wide diversity of characteristics has been reported for dermal fibroblasts derived from different body sites and it is unknown whether collagen peptides could modulate differently cells from chronological aged and photoaged skin areas. This study investigated the influence of CH on the extracellular matrix metabolism and proliferation of human dermal fibroblasts (HDFs) derived from chronological aged (sun-protected) and photoaged (sun-exposed) body sites. CH treatment did not affect cellular proliferation of either cell cultures, but notably modulated cell metabolism in monolayer model, increasing the content of dermal matrix precursor and main protein, procollagen I and collagen I, respectively. These effects were confirmed in the human dermal equivalent model. The increase in collagen content in the cultures was attributed to stimulation of biosynthesis and decreased collagen I metabolism through inhibition of metalloproteinase activity (MMP) 1 and 2. Modulation of CH in dermal metabolism did not differ between cells derived from sun-protected and sun-exposed areas, although lower concentrations of CH seemed to be enough to stimulate sun-exposed-derived HDFs, suggesting more pronounced effect in these cells. This study contributes to understanding the biological effects of CH on skin cells and viability of its use as a functional ingredient in food supplements.


Asunto(s)
Colágeno/metabolismo , Dermis/metabolismo , Matriz Extracelular/metabolismo , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Colágeno Tipo I/metabolismo , Fibroblastos/metabolismo , Humanos , Metaloproteinasa 1 de la Matriz/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Péptidos/metabolismo , Piel/citología , Envejecimiento de la Piel/fisiología , Rayos Ultravioleta/efectos adversos
16.
Genet Mol Biol ; 39(4): 580-588, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27727361

RESUMEN

In this work we report the characterization of the Rhynchosciara americana histone genes cluster nucleotide sequence. It spans 5,131 bp and contains the four core histones and the linker histone H1. Putative control elements were detected. We also determined the copy number of the tandem repeat unit through quantitative PCR, as well as the unequivocal chromosome location of this unique locus in chromosome A band 13. The data were compared with histone clusters from the genus Drosophila, which are the closest known homologues.

17.
Oncotarget ; 7(8): 8979-92, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26788989

RESUMEN

Chrysotile, like other types of asbestos, has been associated with mesothelioma, lung cancer and asbestosis. However, the cellular abnormalities induced by these fibers involved in cancer development have not been elucidated yet. Previous works show that chrysotile fibers induce features of cancer cells, such as aneuploidy, multinucleation and multipolar mitosis. In the present study, normal and cancer derived human cell lines were treated with chrysotile and the cellular and molecular mechanisms related to generation of aneuploid cells was elucidated. The first alteration observed was cytokinesis regression, the main cause of multinucleated cells formation and centrosome amplification. The multinucleated cells formed after cytokinesis regression were able to progress through cell cycle and generated aneuploid cells after abnormal mitosis. To understand the process of cytokinesis regression, localization of cytokinetic proteins was investigated. It was observed mislocalization of Anillin, Aurora B, Septin 9 and Alix in the intercellular bridge, and no determination of secondary constriction and abscission sites. Fiber treatment also led to overexpression of genes related to cancer, cytokinesis and cell cycle. The results show that chrysotile fibers induce cellular and molecular alterations in normal and tumor cells that have been related to cancer initiation and progression, and that tetraploidization and aneuploid cell formation are striking events after fiber internalization, which could generate a favorable context to cancer development.


Asunto(s)
Aneuploidia , Asbestos Serpentinas/farmacología , Neoplasias Pulmonares/patología , Mitosis/efectos de los fármacos , Aurora Quinasa B/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Humanos , Neoplasias Pulmonares/inducido químicamente , Proteínas de Microfilamentos/metabolismo , Septinas/metabolismo
18.
Arthropod Struct Dev ; 43(5): 511-22, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24943875

RESUMEN

Programmed cell death (PCD) is a focal topic for understanding processes underlying metamorphosis in insects, especially so in holometabolous orders. During adult morphogenesis it allows for the elimination of larva-specific tissues and the reorganization of others for their functionalities in adult life. In Rhynchosciara, this PCD process could be classified as autophagic cell death, yet the expression of apoptosis-related genes and certain morphological aspects suggest that processes, autophagy and apoptosis may be involved. Aiming to reveal the morphological changes that salivary gland and fat body cells undergo during metamorphosis we conducted microscopy analyses to detect chromatin condensation and fragmentation, as well as alterations in the cytoplasm of late pupal tissues of Rhynchosciara americana. Transmission electron microscopy and confocal microscopy revealed cells in variable stages of death. By analyzing the morphological structure of the salivary gland we observed the presence of cells with autophagic vacuoles and apoptotic bodies and DNA fragmentation was confirmed with the TUNEL assay in salivary gland. The reorganization of fat body occurs with discrete detection of cell death by TUNEL assay. However, both salivary gland histolysis and fat body reorganization occur under control of the hormone ecdysone.


Asunto(s)
Apoptosis , Autofagia , Dípteros/crecimiento & desarrollo , Metamorfosis Biológica , Animales , Dípteros/ultraestructura , Cuerpo Adiposo/crecimiento & desarrollo , Cuerpo Adiposo/ultraestructura , Etiquetado Corte-Fin in Situ , Hormonas de Insectos/metabolismo , Larva/crecimiento & desarrollo , Larva/ultraestructura , Microscopía Confocal , Microscopía Electrónica de Transmisión , Pupa/crecimiento & desarrollo , Pupa/ultraestructura , Glándulas Salivales/crecimiento & desarrollo , Glándulas Salivales/ultraestructura
19.
J Exp Clin Cancer Res ; 33: 37, 2014 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-24775603

RESUMEN

Some cancers like melanoma and pancreatic and ovarian cancers, for example, commonly display resistance to chemotherapy, and this is the major obstacle to a better prognosis of patients. Frequently, literature presents studies in monolayer cell cultures, 3D cell cultures or in vivo studies, but rarely the same work compares results of drug resistance in different models. Several of these works are presented in this review and show that usually cells in 3D culture are more resistant to drugs than monolayer cultured cells due to different mechanisms. Searching for new strategies to sensitize different tumors to chemotherapy, many methods have been studied to understand the mechanisms whereby cancer cells acquire drug resistance. These methods have been strongly advanced along the years and therapies using different drugs have been increasingly proposed to induce cell death in resistant cells of different cancers. Recently, cancer stem cells (CSCs) have been extensively studied because they would be the only cells capable of sustaining tumorigenesis. It is believed that the resistance of CSCs to currently used chemotherapeutics is a major contributing factor in cancer recurrence and later metastasis development. This review aims to appraise the experimental progress in the study of acquired drug resistance of cancer cells in different models as well as to understand the role of CSCs as the major contributing factor in cancer recurrence and metastasis development, describing how CSCs can be identified and isolated.


Asunto(s)
Antineoplásicos/farmacología , Resistencia a Antineoplásicos , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/uso terapéutico , Resistencia a Múltiples Medicamentos , Ensayos de Selección de Medicamentos Antitumorales , Proteínas de Choque Térmico/metabolismo , Humanos , Recurrencia Local de Neoplasia/prevención & control , Neoplasias/patología , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/fisiología , Células Tumorales Cultivadas
20.
Cancer Cell Int ; 13(1): 38, 2013 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-23631593

RESUMEN

BACKGROUND: Lung cancer often exhibits molecular changes, such as the overexpression of the ErbB1 gene. ErbB1 encodes epidermal growth factor receptor (EGFR), a tyrosine kinase receptor, involved mainly in cell proliferation and survival. EGFR overexpression has been associated with more aggressive disease, poor prognosis, low survival rate and low response to therapy. ErbB1 amplification and mutation are associated with tumor development and are implicated in ineffective treatment. The aim of the present study was to investigate whether the ErbB1 copy number affects EGFR expression, cell proliferation or cell migration by comparing two different cell lines. METHODS: The copies of ErbB1 gene was evaluated by FISH. Immunofluorescence and Western blotting were performed to determine location and expression of proteins mentioned in the present study. Proliferation was studied by flow cytometry and cell migration by wound healing assay and time lapse. RESULTS: We investigated the activation and function of EGFR in the A549 and HK2 lung cancer cell lines, which contain 3 and 6 copies of ErbB1, respectively. The expression of EGFR was lower in the HK2 cell line. EGFR was activated after stimulation with EGF in both cell lines, but this activation did not promote differences in cellular proliferation when compared to control cells. Inhibiting EGFR with AG1478 did not modify cellular proliferation, confirming previous data. However, we observed morphological alterations, changes in microfilament organization and increased cell migration upon EGF stimulation. However, these effects did not seem to be consequence of an epithelial-mesenchymal transition. CONCLUSION: EGFR expression did not appear to be associated to the ErbB1 gene copy number, and neither of these aspects appeared to affect cell proliferation. However, EGFR activation by EGF resulted in cell migration stimulation in both cell lines.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA