Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Inorg Chem ; 63(38): 17429-17434, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39250523

RESUMEN

We present a previously unknown series of cyclometalated platinum(IV) NHC complexes, obtained by oxidative addition of iodine, iodomethane, and different benzyl bromides to platinum(II) complexes with cyclometalated C^C* dibenzofuran, dibenzothiophene, and phenylimidazole ligands together with an acetylacetonate ligand. All compounds were characterized by standard techniques (1H, 13C, and 195Pt NMR and elemental analysis), and for three complexes, solid-state structures could be obtained. DFT calculations (B3LYP(d3)/def2-TZVPP including dispersion interactions in dichloromethane and acetone) were performed to investigate the mechanism of the oxidation and explain the exclusive formation of the observed trans products.

2.
Dalton Trans ; 53(22): 9323-9329, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38747257

RESUMEN

Two N-alkyloxy-N'-phenylimidazolium proligands and the corresponding platinum(II) cyclometalated N-alkyloxyimidazol-2-ylidene complexes with ß-diketonate auxiliary ligands, [(CNOHC^C*)Pt(L∩L)] (L∩L = acetyacetonate (acac) or 1,3-bis(2,4,6-trimethylphenyl)-propane-1,3-dionato (mesacac)) were synthesized and fully characterized. In addition, a Au(I) monocarbene complex was synthesized, isolated and characterized. Solid-state structures of two cyclometalated platinum(II) NOHC complexes and the Au(I) NOHC complex were obtained providing structural proof.

3.
Chemistry ; 30(22): e202304263, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38450788

RESUMEN

Novel platinum(II) complexes, derived from the spiro[fluorene-9,9'-xanthene] (SFX) motif, were synthesized and combined with different auxiliary ligands such as acetylacetonate (acac), bis(2,4,6-trimethylphenyl)propane-1,3-dionate (mesacac) and dihydrobis(3,5-dimethylpyrazole-1-yl) borate. The final products were obtained in yields of up to 36 % and characterized by NMR, X-ray and combustion analysis. These complexes have structured green-blue emission spectra with Commission Internationale de l'Éclairage (CIExy) coordinates of (0.21;0.46). Excellent photoluminescence quantum yields (PLQYs) ranging from 87 %-91 % were found. The emission lifetimes vary from 33 µs to 43 µs. Calculations on the B3LYP/6-311++G** level of theory reveal, that the nature of the emissive state is dependent on the positional regioisomerism of the SFX motif. The 2-SFX complexes demonstrate ligand-centered (3LC) emission, while the 2'-SFX regioisomer with the mesacac ligand shows a strong 3MLCT character.

4.
Inorg Chem ; 61(39): 15499-15509, 2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36125339

RESUMEN

Two novel bidentate C^C*spiro cyclometalated platinum(II) complexes comprising a spiro-conjugated bifluorene ligand and different ß-diketonate auxiliary ligands are synthesized and characterized. Their preparation employs a robust and elaborate synthetic protocol commencing with an N-heterocyclic carbene precursor. Structural characterization by means of NMR techniques and solid-state structures validate the proposed and herein presented molecular scaffolds. Photophysical studies, including laser flash photolysis methods, reveal an almost exclusively ligand-centered triplet state, governed by the C^C*spiro-NHC ligand. The high triplet energies and the long triplet lifetimes in the order of 30 µs in solution make the complexes good candidates for light-emitting diode-driven photocatalysis, as initial energy transfer experiments reveal. In-depth time-dependent density functional theory investigations are in excellent accordance with our spectroscopic findings. The title compounds are highly emissive in the bluish-green color region with quantum yields of up to 87% in solid-state measurements.

5.
J Org Chem ; 87(5): 2456-2469, 2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35166542

RESUMEN

Conventional spiro-linked conjugated materials are attractive for organic optoelectronic applications due to the unique combination of their optical and electronic properties. However, spiro-linked conjugated materials with conjugation extension directed along the main axis of the molecule are still only rare examples among the vast number of spiro-linked conjugated materials. Herein, the synthesis, leading to π-extended spiro-linked conjugated materials─spiro[4.4]nonane-1,6-diones and spiro[5.5]undecane-1,7-diones─has been developed and optimized. The proposed design concept starts from readily available malonic esters and contains several steps: double alkylation of malonic ester with bromomethylaryl(hetaryl)s; conversion of a malonic ester into the corresponding malonic acid; electrophilic spirocyclization of the latter into the annulated spiro[4.4]nonane-1,6-dione or spiro[5.5]undecane-1,7-dione in the presence of phosphorus pentoxide. On the basis of these insights, the developed method yielded spiro-linked conjugated cores fused with benzene, thiophene, and naphthalene, decorated with active halogen atoms. The structures of the synthesized spirocycles were determined by single-crystal X-ray diffraction analysis. Benzene fused spiro[4.4]nonane-1,6-dione decorated with bromine atoms was transformed into V-shape phenylene-thiophene co-oligomer type spirodimers via Stille coupling. The spiro-bis(4-n-dodecylphenyl)-2,2'-bithiophene derivative possessed high photoluminescence properties in both solution and solid state with a photoluminescence quantum yield (PL QY) of 38%.

6.
Am J Cancer Res ; 11(10): 4668-4682, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34765286

RESUMEN

Despite the significant progress in cancer cure, the development of new approaches to cancer therapy is still of great importance since many deadly tumors remain untreatable. Boron neutron capture therapy (BNCT), proposed more than eighty years ago, is still considered a potentially advantageous approach. Irradiation of cells containing 10B isotopes with epithermal neutrons and the consequent decay of boron nuclei releases particles that deposit high energy along a very short path, inflicting heavy damage on the target cells but sparing the neighbouring tissue. Delivery and preferential accumulation of boron in cancer cells are the major obstacles that slow down the clinical use of BNCT. Since DNA damage caused by irradiation is the major reason for cell death, the incorporation of boron-containing nucleotides into the DNA of cancer cells may significantly increase the efficacy of BNCT. In this review, we discuss the current state of knowledge in the synthesis of boron-containing nucleosides and their application for BNCT with a special focus on their possible incorporation into genomic DNA.

7.
Angew Chem Int Ed Engl ; 57(29): 9103-9107, 2018 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-29786926

RESUMEN

Presented herein is a general protocol for the alkylation of simple aryl fluorides with unbiased secondary Grignard reagents by means of nickel catalysis. This study revealed a general Thorpe-Ingold effect in the ligand backbone which confers a high degree of selectivity for the secondary carbon center in the C-C coupling event. This protocol is characterized by mild reaction conditions, robustness, and simplicity. Both electron-rich and electron-deficient aryl fluorides are suitable candidates in this transformation. Equally amenable are a variety of heterocycles, permitting the coupling without over alkylation at the electrophilic sites.

8.
Angew Chem Int Ed Engl ; 56(7): 1925-1928, 2017 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-28078764

RESUMEN

Characterizing the stereochemistry of transient photoisomerization products remains a big challenge for the design of molecular machines, such as unidirectional molecular motors. Often these states are not stable long enough to be characterized in detail using conventional spectroscopic tools. The structurally simple camphorquinone imine 1 serves to illustrate the advantage of combining the matrix-isolation technique with vibrational circular dichroism (VCD) spectroscopy for the investigation of photoisomerizations of chiral molecules. In particular, it is shown that both (E)- and (Z)-1 can be generated photochemically at cryogenic temperatures in an argon matrix, and more importantly, that the stereochemistry of both switching states can be characterized reliably.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA