RESUMEN
The Early Bronze Age in Europe is characterized by social and genetic transformations, starting in the early 3rd millennium BCE. New settlement and funerary structures, artifacts and techniques indicate times of change with increasing economic asymmetries and political hierarchization. Technological advances in metallurgy also played an important role, facilitating trade and exchange networks, which became tangible in higher levels of mobility and connectedness. Archeogenetic studies have revealed a substantial transformation of the genetic ancestry around this time, ultimately linked to the expansion of steppe- and forest steppe pastoralists from Eastern Europe. Evidence for emerging infectious diseases such as Yersinia pestis adds further complexity to these tumultuous and transformative times. The El Argar complex in southern Iberia marks the genetic turnover in southwestern Europe ~ 2200 BCE that accompanies profound changes in the socio-economic structure of the region. To answer the question of who was buried in the emblematic double burials of the El Argar site La Almoloya, we integrated results from biological relatedness analyses and archaeological funerary contexts and refined radiocarbon-based chronologies from 68 individuals. We find that the El Argar society was virilocally and patrilineally organized and practiced reciprocal female exogamy, supported by pedigrees that extend up to five generations along the paternal line. Synchronously dated adult males and females from double tombs were found to be unrelated mating partners, whereby the incoming females reflect socio-political alliances among El Argar groups. In three cases these unions had common offspring, while paternal half-siblings also indicate serial monogamy or polygyny.
Asunto(s)
Arqueología , Entierro , Humanos , Adulto , Masculino , Femenino , Historia Antigua , Europa (Continente) , Europa Oriental , FamiliaRESUMEN
The emerging Bronze Age (BA) of southeastern Iberia saw marked social changes. Late Copper Age (CA) settlements were abandoned in favor of hilltop sites, and collective graves were largely replaced by single or double burials with often distinctive grave goods indirectly reflecting a hierarchical social organization, as exemplified by the BA El Argar group. We explored this transition from a genomic viewpoint by tripling the amount of data available for this period. Concomitant with the rise of El Argar starting ~2200 cal BCE, we observe a complete turnover of Y-chromosome lineages along with the arrival of steppe-related ancestry. This pattern is consistent with a founder effect in male lineages, supported by our finding that males shared more relatives at sites than females. However, simple two-source models do not find support in some El Argar groups, suggesting additional genetic contributions from the Mediterranean that could predate the BA.
RESUMEN
The El Argar society of the Bronze Age in the southeast of the Iberian Peninsula (2200-1550 cal BCE) was among the first complex societies in Europe. Its economy was based on cereal cultivation and metallurgy, it was organized hierarchically, and successively expanded its territory. Most of the monumentally fortified settlements lay on steeply sloped mountains, separated by fertile plains, and allowed optimal control of the area. Here, we explore El Argar human diets, animal husbandry strategies, and food webs using stable carbon and nitrogen isotope analysis of charred cereal grains as well as human and animal bone collagen. The sample comprised 75 human individuals from the sites of La Bastida (n = 52) and Gatas (n = 23), 32 domesticated and wild animals as well as 76 barley and 29 wheat grains from two chronological phases of a total time span of ca. 650 years. The grains indicate extensive cereal cultivation under rain-fed conditions with little to moderate application of manure. Especially at La Bastida, crops and their by-products contributed significantly to the forage of the domesticated animals, which attests to a strong interrelation of cultivation and animal husbandry. Trophic level spacing and Bayesian modelling confirm that human diets were largely based on barley with some contribution of meat or dairy products. A cross-sectional analysis of bone collagen suggests that children were breastfed until about 1.5-2 years old, and infants from Gatas may have suffered from more metabolic stress than those at La Bastida. Adults of both sexes consumed similar diets that reflect social and chronological variation to some extent. Despite significantly higher δ13C and δ15N values at La Bastida than at Gatas, the isotopic data of the staple crops and domestic animals from both sites indicate that such differences do not necessarily correspond to different average human diets, but to agricultural strategies. These results urge for a reassessment of previous isotope studies in which only human remains have been taken into account. The study highlights that disentangling the complex influences on human isotope compositions requires a firm set of comparative data.
Asunto(s)
Isótopos de Carbono/análisis , Dieta/historia , Isótopos de Nitrógeno/análisis , Adolescente , Adulto , Crianza de Animales Domésticos , Animales , Animales Domésticos , Animales Salvajes , Arqueología , Huesos/química , Niño , Preescolar , Productos Agrícolas , Grano Comestible , Femenino , Historia Antigua , Humanos , Lactante , Masculino , España , Adulto JovenRESUMEN
Agriculture first reached the Iberian Peninsula around 5700 BCE. However, little is known about the genetic structure and changes of prehistoric populations in different geographic areas of Iberia. In our study, we focus on the maternal genetic makeup of the Neolithic (~ 5500-3000 BCE), Chalcolithic (~ 3000-2200 BCE) and Early Bronze Age (~ 2200-1500 BCE). We report ancient mitochondrial DNA results of 213 individuals (151 HVS-I sequences) from the northeast, central, southeast and southwest regions and thus on the largest archaeogenetic dataset from the Peninsula to date. Similar to other parts of Europe, we observe a discontinuity between hunter-gatherers and the first farmers of the Neolithic. During the subsequent periods, we detect regional continuity of Early Neolithic lineages across Iberia, however the genetic contribution of hunter-gatherers is generally higher than in other parts of Europe and varies regionally. In contrast to ancient DNA findings from Central Europe, we do not observe a major turnover in the mtDNA record of the Iberian Late Chalcolithic and Early Bronze Age, suggesting that the population history of the Iberian Peninsula is distinct in character.