Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 43(7): 1257-1272, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38454149

RESUMEN

Dynein-2 is a large multiprotein complex that powers retrograde intraflagellar transport (IFT) of cargoes within cilia/flagella, but the molecular mechanism underlying this function is still emerging. Distinctively, dynein-2 contains two identical force-generating heavy chains that interact with two different intermediate chains (WDR34 and WDR60). Here, we dissect regulation of dynein-2 function by WDR34 and WDR60 using an integrative approach including cryo-electron microscopy and CRISPR/Cas9-enabled cell biology. A 3.9 Å resolution structure shows how WDR34 and WDR60 use surprisingly different interactions to engage equivalent sites of the two heavy chains. We show that cilia can assemble in the absence of either WDR34 or WDR60 individually, but not both subunits. Dynein-2-dependent distribution of cargoes depends more strongly on WDR60, because the unique N-terminal extension of WDR60 facilitates dynein-2 targeting to cilia. Strikingly, this N-terminal extension can be transplanted onto WDR34 and retain function, suggesting it acts as a flexible tether to the IFT "trains" that assemble at the ciliary base. We discuss how use of unstructured tethers represents an emerging theme in IFT train interactions.


Asunto(s)
Cilios , Dineínas , Dineínas/metabolismo , Microscopía por Crioelectrón , Transporte Biológico , Cilios/metabolismo , Flagelos/metabolismo
2.
J Cell Sci ; 137(8)2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38533689

RESUMEN

Primary cilia are essential eukaryotic organelles required for signalling and secretion. Dynein-2 is a microtubule-motor protein complex and is required for ciliogenesis via its role in facilitating retrograde intraflagellar transport (IFT) from the cilia tip to the cell body. Dynein-2 must be assembled and loaded onto IFT trains for entry into cilia for this process to occur, but how dynein-2 is assembled and how it is recycled back into a cilium remain poorly understood. Here, we identify centrosomal protein of 170 kDa (CEP170) as a dynein-2-interacting protein in mammalian cells. We show that loss of CEP170 perturbs intraflagellar transport and hedgehog signalling, and alters the stability of dynein-2 holoenzyme complex. Together, our data indicate a role for CEP170 in supporting cilia function and dynein-2 assembly.


Asunto(s)
Cilios , Proteínas Asociadas a Microtúbulos , Cilios/metabolismo , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Animales , Dineínas/metabolismo , Dineínas/genética , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Transducción de Señal , Ratones , Flagelos/metabolismo
4.
J Cell Sci ; 136(5)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36268591

RESUMEN

The primary cilium is a sensory organelle, receiving signals from the external environment and relaying them into the cell. Mutations in proteins required for transport in the primary cilium result in ciliopathies, a group of genetic disorders that commonly lead to the malformation of organs such as the kidney, liver and eyes and skeletal dysplasias. The motor proteins dynein-2 and kinesin-2 mediate retrograde and anterograde transport, respectively, in the cilium. WDR34 (also known as DYNC2I2), a dynein-2 intermediate chain, is required for the maintenance of cilia function. Here, we investigated WDR34 mutations identified in Jeune syndrome, short-rib polydactyly syndrome and asphyxiating thoracic dysplasia patients. There is a poor correlation between genotype and phenotype in these cases, making diagnosis and treatment highly complex. We set out to define the biological impacts on cilia formation and function of WDR34 mutations by stably expressing the mutant proteins in WDR34-knockout cells. WDR34 mutations led to different spectrums of phenotypes. Quantitative proteomics demonstrated changes in dynein-2 assembly, whereas initiation and extension of the axoneme, localization of intraflagellar transport complex-B proteins, transition zone integrity and Hedgehog signalling were also affected.


Asunto(s)
Dineínas , Síndrome de Ellis-Van Creveld , Humanos , Dineínas/genética , Dineínas/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Hedgehog/metabolismo , Síndrome de Ellis-Van Creveld/genética , Síndrome de Ellis-Van Creveld/metabolismo , Cilios/genética , Cilios/metabolismo , Mutación/genética
5.
Cell ; 185(26): 4971-4985.e16, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36462505

RESUMEN

Intraflagellar transport (IFT) trains are massive molecular machines that traffic proteins between cilia and the cell body. Each IFT train is a dynamic polymer of two large complexes (IFT-A and -B) and motor proteins, posing a formidable challenge to mechanistic understanding. Here, we reconstituted the complete human IFT-A complex and obtained its structure using cryo-EM. Combined with AlphaFold prediction and genome-editing studies, our results illuminate how IFT-A polymerizes, interacts with IFT-B, and uses an array of ß-propeller and TPR domains to create "carriages" of the IFT train that engage TULP adaptor proteins. We show that IFT-A⋅TULP carriages are essential for cilia localization of diverse membrane proteins, as well as ICK-the key kinase regulating IFT train turnaround. These data establish a structural link between IFT-A's distinct functions, provide a blueprint for IFT-A in the train, and shed light on how IFT evolved from a proto-coatomer ancestor.


Asunto(s)
Cilios , Cinesinas , Humanos , Cilios/metabolismo , Transporte Biológico , Cinesinas/metabolismo , Dineínas/metabolismo , Proteínas de la Membrana/metabolismo , Transporte de Proteínas , Flagelos/metabolismo
6.
Nat Commun ; 13(1): 6988, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36384964

RESUMEN

Plasmodium species cause malaria and kill hundreds of thousands annually. The microtubule-based motor kinesin-8B is required for development of the flagellated Plasmodium male gamete, and its absence completely blocks parasite transmission. To understand the molecular basis of kinesin-8B's essential role, we characterised the in vitro properties of kinesin-8B motor domains from P. berghei and P. falciparum. Both motors drive ATP-dependent microtubule gliding, but also catalyse ATP-dependent microtubule depolymerisation. We determined these motors' microtubule-bound structures using cryo-electron microscopy, which showed very similar modes of microtubule interaction in which Plasmodium-distinct sequences at the microtubule-kinesin interface influence motor function. Intriguingly however, P. berghei kinesin-8B exhibits a non-canonical structural response to ATP analogue binding such that neck linker docking is not induced. Nevertheless, the neck linker region is required for motility and depolymerisation activities of these motors. These data suggest that the mechanochemistry of Plasmodium kinesin-8Bs is functionally tuned to support flagella formation.


Asunto(s)
Malaria , Parásitos , Plasmodium , Masculino , Animales , Cinesinas , Parásitos/metabolismo , Microscopía por Crioelectrón , Unión Proteica/fisiología , Plasmodium/metabolismo , Adenosina Trifosfato/metabolismo
7.
EMBO Mol Med ; 13(11): e13818, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34661376

RESUMEN

Infectious diseases caused by apicomplexan parasites remain a global public health threat. The presence of multiple ligand-binding sites in tubulin makes this protein an attractive target for anti-parasite drug discovery. However, despite remarkable successes as anti-cancer agents, the rational development of protozoan parasite-specific tubulin drugs has been hindered by a lack of structural and biochemical information on protozoan tubulins. Here, we present atomic structures for a protozoan tubulin and microtubule and delineate the architectures of apicomplexan tubulin drug-binding sites. Based on this information, we rationally designed the parasite-specific tubulin inhibitor parabulin and show that it inhibits growth of parasites while displaying no effects on human cells. Our work presents for the first time the rational design of a species-specific tubulin drug providing a framework to exploit structural differences between human and protozoa tubulin variants enabling the development of much-needed, novel parasite inhibitors.


Asunto(s)
Antiparasitarios , Parásitos , Animales , Antiparasitarios/farmacología , Sitios de Unión , Proliferación Celular , Humanos , Microtúbulos/metabolismo , Parásitos/metabolismo , Tubulina (Proteína) , Moduladores de Tubulina/farmacología
8.
J Biol Chem ; 297(5): 101063, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34375637

RESUMEN

Plasmodium parasites cause malaria and are responsible annually for hundreds of thousands of deaths. Kinesins are a superfamily of microtubule-dependent ATPases that play important roles in the parasite replicative machinery, which is a potential target for antiparasite drugs. Kinesin-5, a molecular motor that cross-links microtubules, is an established antimitotic target in other disease contexts, but its mechanism in Plasmodium falciparum is unclear. Here, we characterized P. falciparum kinesin-5 (PfK5) using cryo-EM to determine the motor's nucleotide-dependent microtubule-bound structure and introduced 3D classification of individual motors into our microtubule image processing pipeline to maximize our structural insights. Despite sequence divergence in PfK5, the motor exhibits classical kinesin mechanochemistry, including ATP-induced subdomain rearrangement and cover neck bundle formation, consistent with its plus-ended directed motility. We also observed that an insertion in loop5 of the PfK5 motor domain creates a different environment in the well-characterized human kinesin-5 drug-binding site. Our data reveal the possibility for selective inhibition of PfK5 and can be used to inform future exploration of Plasmodium kinesins as antiparasite targets.


Asunto(s)
Cinesinas , Plasmodium falciparum , Proteínas Protozoarias , Antimaláricos/química , Microscopía por Crioelectrón , Humanos , Cinesinas/metabolismo , Cinesinas/ultraestructura , Plasmodium falciparum/química , Plasmodium falciparum/metabolismo , Plasmodium falciparum/ultraestructura , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/ultraestructura
9.
Semin Cell Dev Biol ; 107: 82-90, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32684327

RESUMEN

Intraflagellar transport (IFT) sculpts the proteome of cilia and flagella; the antenna-like organelles found on the surface of virtually all human cell types. By delivering proteins to the growing ciliary tip, recycling turnover products, and selectively transporting signalling molecules, IFT has critical roles in cilia biogenesis, quality control, and signal transduction. IFT involves long polymeric arrays, termed IFT trains, which move to and from the ciliary tip under the power of the microtubule-based motor proteins kinesin-II and dynein-2. Recent top-down and bottom-up structural biology approaches are converging on the molecular architecture of the IFT train machinery. Here we review these studies, with a focus on how kinesin-II and dynein-2 assemble, attach to IFT trains, and undergo precise regulation to mediate bidirectional transport.


Asunto(s)
Flagelos/metabolismo , Proteínas Motoras Moleculares/metabolismo , Animales , Transporte Biológico , Humanos , Microtúbulos/metabolismo , Modelos Biológicos
11.
J Cell Sci ; 133(6)2020 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-32229580

RESUMEN

Cytoplasmic dynein-2 is a motor protein complex that drives the movement of cargoes along microtubules within cilia, facilitating the assembly of these organelles on the surface of nearly all mammalian cells. Dynein-2 is crucial for ciliary function, as evidenced by deleterious mutations in patients with skeletal abnormalities. Long-standing questions include how the dynein-2 complex is assembled, regulated, and switched between active and inactive states. A combination of model organisms, in vitro cell biology, live-cell imaging, structural biology and biochemistry has advanced our understanding of the dynein-2 motor. In this Cell Science at a Glance article and the accompanying poster, we discuss the current understanding of dynein-2 and its roles in ciliary assembly and function.


Asunto(s)
Dineínas Citoplasmáticas , Dineínas , Animales , Transporte Biológico , Cilios/metabolismo , Dineínas Citoplasmáticas/genética , Dineínas Citoplasmáticas/metabolismo , Dineínas/genética , Dineínas/metabolismo , Humanos , Cinesinas/metabolismo , Microtúbulos/metabolismo
12.
PLoS Pathog ; 15(10): e1008048, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31600347

RESUMEN

Kinesin-8 proteins are microtubule motors that are often involved in regulation of mitotic spindle length and chromosome alignment. They move towards the plus ends of spindle microtubules and regulate the dynamics of these ends due, at least in some species, to their microtubule depolymerization activity. Plasmodium spp. exhibit an atypical endomitotic cell division in which chromosome condensation and spindle dynamics in the different proliferative stages are not well understood. Genome-wide shared orthology analysis of Plasmodium spp. revealed the presence of two kinesin-8 motor proteins, kinesin-8X and kinesin-8B. Here we studied the biochemical properties of kinesin-8X and its role in parasite proliferation. In vitro, kinesin-8X has motility and depolymerization activities like other kinesin-8 motors. To understand the role of Plasmodium kinesin-8X in cell division, we used fluorescence-tagging and live cell imaging to define its location, and gene targeting to analyse its function, during all proliferative stages of the rodent malaria parasite P. berghei life cycle. The results revealed a spatio-temporal involvement of kinesin-8X in spindle dynamics and an association with both mitotic and meiotic spindles and the putative microtubule organising centre (MTOC). Deletion of the kinesin-8X gene revealed a defect in oocyst development, confirmed by ultrastructural studies, suggesting that this protein is required for oocyst development and sporogony. Transcriptome analysis of Δkinesin-8X gametocytes revealed modulated expression of genes involved mainly in microtubule-based processes, chromosome organisation and the regulation of gene expression, supporting a role for kinesin-8X in cell division. Kinesin-8X is thus required for parasite proliferation within the mosquito and for transmission to the vertebrate host.


Asunto(s)
Cinesinas/metabolismo , Malaria/parasitología , Malaria/transmisión , Oocistos/citología , Plasmodium/fisiología , Proteínas Protozoarias/metabolismo , Huso Acromático/fisiología , Animales , Segregación Cromosómica , Femenino , Cinesinas/genética , Masculino , Ratones Endogámicos BALB C , Microtúbulos/metabolismo , Mitosis , Oocistos/fisiología , Proteínas Protozoarias/genética
13.
Nat Struct Mol Biol ; 26(9): 823-829, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31451806

RESUMEN

Dynein-2 assembles with polymeric intraflagellar transport (IFT) trains to form a transport machinery that is crucial for cilia biogenesis and signaling. Here we recombinantly expressed the ~1.4-MDa human dynein-2 complex and solved its cryo-EM structure to near-atomic resolution. The two identical copies of the dynein-2 heavy chain are contorted into different conformations by a WDR60-WDR34 heterodimer and a block of two RB and six LC8 light chains. One heavy chain is steered into a zig-zag conformation, which matches the periodicity of the anterograde IFT-B train. Contacts between adjacent dyneins along the train indicate a cooperative mode of assembly. Removal of the WDR60-WDR34-light chain subcomplex renders dynein-2 monomeric and relieves autoinhibition of its motility. Our results converge on a model in which an unusual stoichiometry of non-motor subunits controls dynein-2 assembly, asymmetry, and activity, giving mechanistic insight into the interaction of dynein-2 with IFT trains and the origin of diverse functions in the dynein family.


Asunto(s)
Dineínas/metabolismo , Dineínas/ultraestructura , Multimerización de Proteína , Microscopía por Crioelectrón , Humanos , Conformación Proteica , Transporte de Proteínas
14.
Biochem Soc Trans ; 46(4): 967-982, 2018 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-30065109

RESUMEN

Two classes of dynein power long-distance cargo transport in different cellular contexts. Cytoplasmic dynein-1 is responsible for the majority of transport toward microtubule minus ends in the cell interior. Dynein-2, also known as intraflagellar transport dynein, moves cargoes along the axoneme of eukaryotic cilia and flagella. Both dyneins operate as large ATP-driven motor complexes, whose dysfunction is associated with a group of human disorders. But how similar are their mechanisms of action and regulation? To examine this question, this review focuses on recent advances in dynein-1 and -2 research, and probes to what extent the emerging principles of dynein-1 transport could apply to or differ from those of the less well-understood dynein-2 mechanoenzyme.


Asunto(s)
Cilios/metabolismo , Citoplasma/metabolismo , Dineínas/metabolismo , Adenosina Trifosfato/metabolismo , Axonema/metabolismo , Transporte de Proteínas
15.
J Vis Exp ; (133)2018 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-29578499

RESUMEN

Given their potential for significant property improvements relative to their large grained counterparts, much work has been devoted to the continued development of nanocrystalline metals. Despite these efforts, the transition of these materials from the lab bench to actual applications has been blocked by the inability to produce large scale parts that retain the desired nanocrystalline microstructures. Following the development of a method proven to stabilize the nanosized grain structure to temperatures approaching that of the melting point for the given metal, the US Army Research Laboratory (ARL) has progressed to the next stage in the development of these materials - namely the production of large scale parts suitable for testing and evaluation in a range of relevant test environments. This report provides a broad overview of the ongoing efforts in the processing, characterization, and consolidation of these materials at ARL. In particular, focus is placed on the methodology used for producing the nanocrystalline metal powders, in both small and large-scale amounts, that are at the center of ongoing research efforts.


Asunto(s)
Academias e Institutos/normas , Cristalización/métodos , Hospitales Militares/normas , Laboratorios/normas , Ensayo de Materiales/métodos , Estados Unidos
16.
Nat Struct Mol Biol ; 24(11): 931-943, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28991265

RESUMEN

CAMSAP and Patronin family members regulate microtubule minus-end stability and localization and thus organize noncentrosomal microtubule networks, which are essential for cell division, polarization and differentiation. Here, we found that the CAMSAP C-terminal CKK domain is widely present among eukaryotes and autonomously recognizes microtubule minus ends. Through a combination of structural approaches, we uncovered how mammalian CKK binds between two tubulin dimers at the interprotofilament interface on the outer microtubule surface. In vitro reconstitution assays combined with high-resolution fluorescence microscopy and cryo-electron tomography suggested that CKK preferentially associates with the transition zone between curved protofilaments and the regular microtubule lattice. We propose that minus-end-specific features of the interprotofilament interface at this site serve as the basis for CKK's minus-end preference. The steric clash between microtubule-bound CKK and kinesin motors explains how CKK protects microtubule minus ends against kinesin-13-induced depolymerization and thus controls the stability of free microtubule minus ends.


Asunto(s)
Cinesinas/antagonistas & inhibidores , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Eucariontes , Microscopía Fluorescente , Unión Proteica
17.
Nat Struct Mol Biol ; 24(5): 461-468, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28394326

RESUMEN

Cilia are multifunctional organelles that are constructed using intraflagellar transport (IFT) of cargo to and from their tip. It is widely held that the retrograde IFT motor, dynein-2, must be controlled in order to reach the ciliary tip and then unleashed to power the return journey. However, the mechanism is unknown. Here, we systematically define the mechanochemistry of human dynein-2 motors as monomers, dimers, and multimotor assemblies with kinesin-II. Combining these data with insights from single-particle EM, we discover that dynein-2 dimers are intrinsically autoinhibited. Inhibition is mediated by trapping dynein-2's mechanical 'linker' and 'stalk' domains within a novel motor-motor interface. We find that linker-mediated inhibition enables efficient transport of dynein-2 by kinesin-II in vitro. These results suggest a conserved mechanism for autoregulation among dimeric dyneins, which is exploited as a switch for dynein-2's recycling activity during IFT.


Asunto(s)
Dineínas/química , Dineínas/metabolismo , Dineínas/ultraestructura , Humanos , Cinesinas/química , Cinesinas/metabolismo , Cinesinas/ultraestructura , Microscopía Electrónica , Modelos Biológicos , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína
18.
PLoS One ; 12(4): e0175411, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28419113

RESUMEN

Wildlife managers routinely seek to establish sustainable limits of sport harvest or other regulated forms of take while confronted with considerable uncertainty. A growing body of ecological research focuses on methods to describe and account for uncertainty in management decision-making and to prioritize research and monitoring investments to reduce the most influential uncertainties. We used simulation methods incorporating measures of demographic uncertainty to evaluate risk of overharvest and prioritize information needs for North American sea ducks (Tribe Mergini). Sea ducks are popular game birds in North America, yet they are poorly monitored and their population dynamics are poorly understood relative to other North American waterfowl. There have been few attempts to assess the sustainability of harvest of North American sea ducks, and no formal harvest strategy exists in the U.S. or Canada to guide management. The popularity of sea duck hunting, extended hunting opportunity for some populations (i.e., special seasons and/or bag limits), and population declines have led to concern about potential overharvest. We used Monte Carlo simulation to contrast estimates of allowable harvest and observed harvest and assess risk of overharvest for 7 populations of North American sea ducks: the American subspecies of common eider (Somateria mollissima dresseri), eastern and western populations of black scoter (Melanitta americana) and surf scoter (M. perspicillata), and continental populations of white-winged scoter (M. fusca) and long-tailed duck (Clangula hyemalis). We combined information from empirical studies and the opinions of experts through formal elicitation to create probability distributions reflecting uncertainty in the individual demographic parameters used in this assessment. Estimates of maximum growth (rmax), and therefore of allowable harvest, were highly uncertain for all populations. Long-tailed duck and American common eider appeared to be at high risk of overharvest (i.e., observed harvest < allowable harvest in 5-7% and 19-26% of simulations, respectively depending on the functional form of density dependence), whereas the other populations appeared to be at moderate risk to low risk (observed harvest < allowable harvest in 22-68% of simulations, again conditional on the form of density dependence). We also evaluated the sensitivity of the difference between allowable and observed harvest estimates to uncertainty in individual demographic parameters to prioritize information needs. We found that uncertainty in overall fecundity had more influence on comparisons of allowable and observed harvest than adult survival or observed harvest for all species except long-tailed duck. Although adult survival was characterized by less uncertainty than individual components of fecundity, it was identified as a high priority information need given the sensitivity of growth rate and allowable harvest to this parameter. Uncertainty about population size was influential in the comparison of observed and allowable harvest for 5 of the 6 populations where it factored into the assessment. While this assessment highlights a high degree of uncertainty in allowable harvest, it provides a framework for integration of improved data from future research and monitoring. It could also serve as the basis for harvest strategy development as management objectives and regulatory alternatives are specified by the management community.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Patos/fisiología , Ecosistema , Estaciones del Año , Algoritmos , Animales , Cruzamiento , Canadá , Patos/clasificación , Testimonio de Experto , Femenino , Fertilidad/fisiología , Geografía , Humanos , Masculino , Método de Montecarlo , Océanos y Mares , Densidad de Población , Dinámica Poblacional , Investigadores/estadística & datos numéricos , Incertidumbre , Estados Unidos
19.
Eur Phys J E Soft Matter ; 39(10): 95, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27771859

RESUMEN

A self-consistent model is developed to investigate attachment/detachment kinetics of two static, deformable microspheres with irregular surface and coated with flexible binding ligands. The model highlights how the microscale binding kinetics of these ligands as well as the attractive/repulsive potential of the charged surface affects the macroscale static deformed configuration of the spheres. It is shown that in the limit of smooth, neutrally charged surface (i.e., the dimensionless inverse Debye length, [Formula: see text]), interacting via elastic binders (i.e., the dimensionless stiffness coefficient, [Formula: see text]) the adhesion mechanics approaches the regime of application of the JKR theory, and in this particular limit, the contact radius, Rc, scales with the particle radius, R, according to the scaling law, [Formula: see text]. We show that static, deformed, highly charged, ligand-coated surface of micro-spheres exhibit strong adhesion. Normal stress distribution within the contact area adjusts with the binder stiffness coefficient, from a maximum at the center to a maximum at the periphery of the region. Although reported in some in vitro experiments involving particle adhesion, until now a physical interpretation for this variation of the stress distribution for deformable, charged, ligand-coated microspheres is missing. Surface roughness results in a diminished adhesion with a distinct reduction in the pull-off force, larger separation gap, weaker normal stress and limited area of adhesion. These results are in agreement with the published experimental findings.

20.
J Math Biol ; 73(4): 1035-52, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26965247

RESUMEN

We present a unified, multiscale model to study the attachment/detachment dynamics of two deforming, charged, near spherical cells, coated with binding ligands and subject to a slow, homogeneous shear flow in a viscous, ionic fluid medium. The binding ligands on the surface of the cells experience both attractive and repulsive forces in an ionic medium and exhibit finite resistance to rotation via bond tilting. The microscale drag forces and couples describing the fluid flow inside the small separation gap between the cells, are calculated using a combination of methods in lubrication theory and previously published numerical results. For a selected range of material and fluid parameters, a hysteretic transition of the sticking probability curves (i.e., the function [Formula: see text]) between the adhesion phase (when [Formula: see text]) and the fragmentation phase (when [Formula: see text]) is attributed to a nonlinear relation between the total nanoscale binding forces and the separation gap between the cells. We show that adhesion is favoured in highly ionic fluids, increased deformability of the cells, elastic binders and a higher fluid shear rate (until a critical threshold value of shear rate is reached). Within a selected range of critical shear rates, the continuation of the limit points (i.e., the turning points where the slope of [Formula: see text] changes sign) predict a bistable region, indicating an abrupt switching between the adhesion and the fragmentation regimes. Although, bistability in the adhesion-fragmentation phase diagram of two deformable, charged cells immersed in an ionic aqueous environment has been identified by some in vitro experiments, but until now, has not been quantified theoretically.


Asunto(s)
Fenómenos Biofísicos , Adhesión Celular/fisiología , Ligandos , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA