Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 5666, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37723181

RESUMEN

TANK-binding kinase 1 (TBK1) is a key signalling component in the production of type-I interferons, which have essential antiviral activities, including against SARS-CoV-2. TBK1, and its homologue IκB kinase-ε (IKKε), can also induce pro-inflammatory responses that contribute to pathogen clearance. While initially protective, sustained engagement of type-I interferons is associated with damaging hyper-inflammation found in severe COVID-19 patients. The contribution of TBK1/IKKε signalling to these responses is unknown. Here we find that the small molecule idronoxil inhibits TBK1/IKKε signalling through destabilisation of TBK1/IKKε protein complexes. Treatment with idronoxil, or the small molecule inhibitor MRT67307, suppresses TBK1/IKKε signalling and attenuates cellular and molecular lung inflammation in SARS-CoV-2-challenged mice. Our findings additionally demonstrate that engagement of STING is not the major driver of these inflammatory responses and establish a critical role for TBK1/IKKε signalling in SARS-CoV-2 hyper-inflammation.


Asunto(s)
COVID-19 , Interferón Tipo I , Animales , Ratones , Quinasa I-kappa B , Modelos Animales de Enfermedad , SARS-CoV-2 , Inflamación
2.
Sci Immunol ; 8(84): eade5343, 2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37390222

RESUMEN

Most human killer cell immunoglobulin-like receptors (KIR) are expressed by natural killer (NK) cells and recognize HLA class I molecules as ligands. KIR3DL3 is a conserved but polymorphic inhibitory KIR recognizing a B7 family ligand, HHLA2, and is implicated for immune checkpoint targeting. The expression profile and biological function of KIR3DL3 have been somewhat elusive, so we searched extensively for KIR3DL3 transcripts, revealing highly enriched expression in γδ and CD8+ T cells rather than NK cells. These KIR3DL3-expressing cells are rare in the blood and thymus but more common in the lungs and digestive tract. High-resolution flow cytometry and single-cell transcriptomics showed that peripheral blood KIR3DL3+ T cells have an activated transitional memory phenotype and are hypofunctional. The T cell receptor (TCR) usage is biased toward genes from early rearranged TCR-α variable segments or Vδ1 chains. In addition, we show that TCR-mediated stimulation can be inhibited through KIR3DL3 ligation. Whereas we detected no impact of KIR3DL3 polymorphism on ligand binding, variants in the proximal promoter and at residue 86 can reduce expression. Together, we demonstrate that KIR3DL3 is up-regulated alongside unconventional T cell stimulation and that individuals may vary in their ability to express KIR3DL3. These results have implications for the personalized targeting of KIR3DL3/HHLA2 checkpoint inhibition.


Asunto(s)
Linfocitos T CD8-positivos , Células Asesinas Naturales , Humanos , Ligandos , Timo , Receptores de Antígenos de Linfocitos T alfa-beta , Inmunoglobulinas , Receptores KIR
3.
Methods Mol Biol ; 2691: 351-369, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37355557

RESUMEN

Epitope-specific immunotherapies have enabled the targeted treatment of a variety of diseases, ranging from cancer, infection, and autoimmune disorders. For CD8+ T cell-based therapies, the precise identification of immunogenic peptides presented by human leukocyte antigen (HLA) class I is essential which can be achieved by immunopeptidomics. Here, using lentivirus-mediated transduction and cell sorting approaches, we present a method to engineer a cell line that does not express its native HLA but instead expresses an HLA of interest (in this instance HLA-A*02:01). This technique can be used to elucidate the immunopeptidome of cell lines expressing different HLAs.


Asunto(s)
Antígenos de Neoplasias , Antígenos de Histocompatibilidad Clase I , Humanos , Antígenos de Histocompatibilidad Clase I/genética , Antígenos HLA/genética , Antígenos de Histocompatibilidad Clase II , Línea Celular Tumoral , Epítopos de Linfocito T , Presentación de Antígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA