Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioengineering (Basel) ; 11(10)2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39451346

RESUMEN

Extracorporeal Carbon Dioxide Removal (ECCO2R) systems support patients with severe respiratory failure. Concurrent ambulation and physical therapy improve patient outcomes, but these procedures are limited by the complexity and size of the extracorporeal systems and rapid changes in patient metabolism and the acid-base balance. Here, we present the first prototype of a wearable ECCO2R system capable of adjusting to a patient's changing metabolic needs. Exhaust gas CO2 (EGCO2) partial pressure is used as an analog for blood CO2 partial pressure (pCO2). Twin blowers modulate sweep gas through the AL to achieve a desired target EGCO2. The integrated system was tested in vitro for 24 h with water, under varying simulated metabolic conditions and target EGCO2 values, and in a single test with whole blood. When challenged with changing inlet water pCO2 levels in in vitro tests, the system adjusted the sweep gas to achieve target EGCO2 within 1 min. Control runs with a fixed sweep gas (without negative feedback) demonstrated higher EGCO2 levels when challenged with higher water flow rates. A single in vitro test with whole ovine blood confirmed functionality in blood. This is the first step toward wearable ECCO2R systems that automatically respond to changing metabolism. Such devices would facilitate physical therapy and grant greater autonomy to patients.

3.
Lancet Child Adolesc Health ; 8(10): 773-780, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39299748

RESUMEN

Extracorporeal membrane oxygenation (ECMO) is a high-risk and low-volume life support with increasing clinical study. However, heterogenous outcome definitions impede data assimilation into evidence to guide practice. The Academic Research Consortium (ARC), an international collaborative forum committed to facilitating the creation of stakeholder-driven consensus nomenclature and outcomes for clinical trials of medical devices, supported the ECMO Core Elements Needed for Trials Regulation And quality of Life (ECMO-CENTRAL) ARC. The ECMO-CENTRAL ARC was assembled to develop definitions of paediatric ECMO adverse events for use in clinical trials and regulatory device evaluation. An initial candidate list of ECMO adverse events derived from the mechanical circulatory support ARC was supplemented with a review of ECMO-relevant adverse event definitions collated from literature published between Jan 1, 1988, and Feb 20, 2023. Distinct teams of international topic experts drafted separate adverse event definitions that were harmonised to existing literature when appropriate. Draft definitions were revised for paediatric ECMO relevance with input from patients, families, and an international expert panel of trialists, clinicians, statisticians, biomedical engineers, device developers, and regulatory agencies. ECMO-CENTRAL ARC was revised and disseminated across research societies and professional organisations. Up to three rounds of internet-based anonymous surveys were planned as a modified Delphi process. The expert panel defined 13 adverse event definitions: neurological, bleeding, device malfunction, acute kidney injury, haemolysis, infection, vascular access-associated injury, non-CNS thrombosis, hepatic dysfunction, right heart failure, left ventricular overload, lactic acidaemia, and hypoxaemia. Definitional structure varied. Among 165 expert panel members, 114 were eligible to vote and 111 voted. Consensus was achieved for all proposed definitions. Agreement ranged from 82% to 95%. ECMO-CENTRAL ARC paired rigorous development with methodical stakeholder involvement and dissemination to define paediatric ECMO adverse events. These definitions will facilitate new research and the assimilation of data across clinical trials and ECMO device evaluation in children.


Asunto(s)
Técnica Delphi , Oxigenación por Membrana Extracorpórea , Humanos , Oxigenación por Membrana Extracorpórea/efectos adversos , Niño , Consenso
4.
ASAIO J ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39269894

RESUMEN

The goal of the low-resistance pediatric artificial lung (PAL-LR) is to serve as a pumpless bridge-to-transplant device for children with end-stage lung failure. The PAL-LR doubles the exposed fiber length of the previous PAL design. In vitro and in vivo studies tested hemocompatibility, device flow, gas exchange and pressure drop performance. For in vitro tests, average rated blood flow (outlet SO2 of 95%) was 2.56 ± 0.93 L/min with a pressure drop of 25.88 ± 0.90 mm Hg. At the targeted pediatric flow rate of 1 L/min, the pressure drop was 8.6 mm Hg compared with 25 mm Hg of the PAL. At rated flow, the average O2 and CO2 transfer rates were 101.75 ± 10.81 and 77.93 ± 8.40 mL/min, respectively. The average maximum O2 and CO2 exchange efficiencies were 215.75 ± 22.93 and 176.99 ± 8.40 mL/(min m2), respectively. In vivo tests revealed an average outlet SO2 of 100%, and average pressure drop of 2 ± 0 mm Hg for a blood flow of 1.07 ± 0.02 L/min. Having a lower resistance, the PAL-LR is a promising step closer to a pumpless artificial membrane lung that alleviates right ventricular strain associated with idiopathic pulmonary hypertension.

5.
Transplant Direct ; 10(9): e1701, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39165492

RESUMEN

Background: Heart transplantation is always an emergency because the transplant needs to occur within 6 h after procurement to prevent primary graft dysfunction. Static cold storage (SCS) is the gold-standard preservation method. This study describes the outcomes of hearts preserved after prolonged SCS (12 and 24 h); those are then resuscitated with a novel normothermic ex situ heart perfusion (NEHP) system. Methods: Anesthetized piglets (n = 10) were used as heart donors. Hearts were procured and stored at 5 °C CoStorSol following standard SCS protocols. Two groups were studied: SCS-12 h and SCS-24 h. After SCS, 8 h of NEHP (37 °C blood-based perfusate) was performed at 0.7-1.0 mL/min/g of cardiac tissue. NEHP parameters were monitored continuously. Results were corroborated with 3 additional hearts transplanted orthotopically in healthy recipients (n = 3) after SCS (24 h) + NEHP (5 h). Recipients were observed for 90 min after weaning off cardiopulmonary bypass support. Results: All hearts (after 12 and 24 h of SCS) regained normal function and metabolism within 10 min and retained it throughout 8 h of NEHP. No differences were observed in NEHP parameters and histopathology between groups. Three hearts were successfully transplanted after a total ~30 h of preservation (24 h of SCS + 5 h of NEHP + 1 h of second cold ischemia time). The 3 recipients were weaned off cardiopulmonary bypass with mild vasopressor support. Conclusions: NEHP has the potential to routinely resuscitate porcine hearts that have undergone SCS for up to 24 h, restoring them to viable function. By objectively assessing heart function before transplant, NEHP may enhance the success rate of transplants. If these resuscitated hearts can be successfully transplanted, it would support the effectiveness of NEHP in ensuring heart viability.

6.
Sci Rep ; 14(1): 13081, 2024 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-38844477

RESUMEN

Extracorporeal cardiopulmonary resuscitation (ECPR) is emerging as a feasible and effective rescue strategy for prolonged cardiac arrest (CA). However, prolonged total body ischemia and reperfusion can cause microvascular occlusion that prevents organ reperfusion and recovery of function. One hypothesized mechanism of microvascular "no-reflow" is leukocyte adhesion and formation of neutrophil extracellular traps. In this study we tested the hypothesis that a leukocyte filter (LF) or leukocyte modulation device (L-MOD) could reduce NETosis and improve recovery of heart and brain function in a swine model of prolonged cardiac arrest treated with ECPR. Thirty-six swine (45.5 ± 2.5 kg, evenly distributed sex) underwent 8 min of untreated ventricular fibrillation CA followed by 30 min of mechanical CPR with subsequent 8 h of ECPR. Two females were later excluded from analysis due to CPR complications. Swine were randomized to standard care (Control group), LF, or L-MOD at the onset of CPR. NET formation was quantified by serum dsDNA and citrullinated histone as well as immunofluorescence staining of the heart and brain for citrullinated histone in the microvasculature. Primary outcomes included recovery of cardiac function based on cardiac resuscitability score (CRS) and recovery of neurologic function based on the somatosensory evoked potential (SSEP) N20 cortical response. In this model of prolonged CA treated with ECPR we observed significant increases in serum biomarkers of NETosis and immunohistochemical evidence of microvascular NET formation in the heart and brain that were not reduced by LF or L-MOD therapy. Correspondingly, there were no significant differences in CRS and SSEP recovery between Control, LF, and L-MOD groups 8 h after ECPR onset (CRS = 3.1 ± 2.7, 3.7 ± 2.6, and 2.6 ± 2.6 respectively; p = 0.606; and SSEP = 27.9 ± 13.0%, 36.7 ± 10.5%, and 31.2 ± 9.8% respectively, p = 0.194). In this model of prolonged CA treated with ECPR, the use of LF or L-MOD therapy during ECPR did not reduce microvascular NETosis or improve recovery of myocardial or brain function. The causal relationship between microvascular NETosis, no-reflow, and recovery of organ function after prolonged cardiac arrest treated with ECPR requires further investigation.


Asunto(s)
Reanimación Cardiopulmonar , Modelos Animales de Enfermedad , Paro Cardíaco , Animales , Paro Cardíaco/terapia , Reanimación Cardiopulmonar/métodos , Porcinos , Femenino , Masculino , Oxigenación por Membrana Extracorpórea/métodos , Leucocitos , Trampas Extracelulares/metabolismo , Procedimientos de Reducción del Leucocitos/métodos
7.
JTCVS Open ; 18: 91-103, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38690428

RESUMEN

Objective: Donor hearts procured after circulatory death (DCD) may significantly increase the number of hearts available for transplantation. The purpose of this study was to analyze current DCD and brain-dead donor (DBD) heart transplantation rates and characterize organ refusal using the most up-to-date United Network for Organ Sharing (UNOS) and Organ Procurement and Transplantation Network data. Methods: We analyzed UNOS and Organ Procurement and Transplantation Network DBD and DCD candidate, transplantation, and demographic data from 2020 through 2022 and 2022 refusal code data to characterize DCD heart use and refusal. Subanalyses were performed to characterize DCD donor demographics and regional transplantation rate variance. Results: DCD hearts were declined 3.37 times more often than DBD hearts. The most frequently used code for DCD refusal was neurologic function, related to concerns of a prolonged dying process and organ preservation. In 2022, 92% (1329/1452) of all DCD refusals were attributed to neurologic function. When compared with DBD, DCD donor hearts were more frequently declined as the result of prolonged warm ischemic time (odds ratio, 5.65; 95% confidence interval, 4.07-7.86) and other concerns over organ preservation (odds ratio, 4.06; 95% confidence interval, 3.33-4.94). Transplantation rate variation was observed between demographic groups and UNOS regions. DCD transplantation rates are currently experiencing second order polynomial growth. Conclusions: DCD donor hearts are declined more frequently than DBD. DCD heart refusals result from concerns over a prolonged dying process and organ preservation. Heart transplantation rates may be substantially improved by ex situ hemodynamic assessment, adoption of normothermic regional perfusion guidelines, and quality initiatives.

8.
Front Cardiovasc Med ; 11: 1325169, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638886

RESUMEN

Cold static storage (CSS) for up to 6 h is the gold standard in heart preservation. Although some hearts stored over 6 h have been transplanted, longer CSS times have increased posttransplant morbimortality. Transmedics® Organ Care System (OCS™) is the only FDA-approved commercial system that provides an alternative to CSS using normothermic ex situ heart perfusion (NEHP) in resting mode with aortic perfusion (Langendorff method). However, it is also limited to 6 h and lacks an objective assessment of cardiac function. Developing a system that can perfuse hearts under NEHP conditions for >24 h can facilitate organ rehabilitation, expansion of the donor pool, and objective functional evaluation. The Extracorporeal Life Support Laboratory at the University of Michigan has worked to prolong NEHP to >24 h with an objective assessment of heart viability during NEHP. An NEHP system was developed for aortic (Langendorff) perfusion using a blood-derived perfusate (leukocyte/thrombocyte-depleted blood). Porcine hearts (n = 42) of different sizes (6-55 kg) were divided into five groups and studied during 24 h NEHP with various interventions in three piglets (small-size) heart groups: (1) Control NEHP without interventions (n = 15); (2) NEHP + plasma exchange (n = 5); (3) NEHP + hemofiltration (n = 10) and two adult-size (juvenile pigs) heart groups (to demonstrate the support of larger hearts); (4) NEHP + hemofiltration (n = 5); and (5) NEHP with intermittent left atrial (iLA) perfusion (n = 7). All hearts with NEHP + interventions (n = 27) were successfully perfused for 24 h, whereas 14 (93.3%) control hearts failed between 10 and 21 h, and 1 control heart (6.6%) lasted 24 h. Hearts in the piglet hemofiltration and plasma exchange groups performed better than those in the control group. The larger hearts in the iLA perfusion group (n = 7) allowed for real-time heart functional assessment and remained stable throughout the 24 h of NEHP. These results demonstrate that heart preservation for 24 h is feasible with our NEHP perfusion technique. Increasing the preservation period beyond 24 h, infection control, and nutritional support all need optimization. This proves the concept that NEHP has the potential to increase the organ pool by (1) considering previously discarded hearts; (2) performing an objective assessment of heart function; (3) increasing the donor/recipient distance; and (4) developing heart-specific perfusion therapies.

9.
Perfusion ; : 2676591241240725, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519444

RESUMEN

INTRODUCTION: A radical paradigm shift in the treatment of premature infants failing conventional treatment is to recreate fetal physiology using an extracorporeal Artificial Placenta (AP). The aim of this study is to evaluate the effects of changing fetal hemoglobin percent (HbF%) on physiology and circuit function during AP support in an ovine model. METHODS: Extremely premature lambs (n = 5) were delivered by cesarean section at 117-121 d estimated gestational age (EGA) (term = 145d), weighing 2.5 ± 0.35 kg. Lambs were cannulated using 10-14Fr cannulae for drainage via the right jugular vein and reinfusion via the umbilical vein. Lambs were intubated and lungs were filled with perfluorodecalin to a meniscus with a pressure of 5-8 cm H2O. The first option for transfusion was fetal whole blood from twins followed by maternal red blood cells. Arterial blood gases were used to titrate AP support to maintain fetal blood gas values. RESULTS: The mean survival time on circuit was 119.6 ± 39.5 h. Hemodynamic parameters and lactate were stable throughout. As more adult blood transfusions were given to maintain hemoglobin at 10 mg/dL, the HbF% declined, reaching 40% by post operative day 7. The HbF% was inversely proportional to flow rates as higher flows were required to maintain adequate oxygen saturation and perfusion. CONCLUSIONS: Transfusion of adult blood led to decreased fetal hemoglobin concentration during AP support. The HbF% was inversely proportional to flow rates. Future directions include strategies to decrease the priming volume and establishing a fetal blood bank to have blood rich in HbF.

10.
Transplantation ; 108(6): 1350-1356, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38411562

RESUMEN

BACKGROUND: Cold static storage and normothermic ex vivo heart perfusion are routinely limited to 6 h. This report describes intermittent left atrial (LA) perfusion that allows cardiac functional assessment in a working heart mode. METHODS: Using our adult porcine model, general anesthesia was induced and a complete cardiectomy was performed following cardioplegic arrest. Back-table instrumentation was completed and normothermic ex vivo heart perfusion (NEHP) was initiated in a nonworking heart mode (Langendorff). After 1 h of resuscitation and recovery, LA perfusion was initiated and the heart was transitioned to a coronary flow-only working heart mode for 30 min. Baseline working heart parameters were documented and the heart was returned to nonworking mode. Working heart assessments were performed for 30 min every 6 h for 24 h. RESULTS: Twenty-four-hour NEHP on 9 consecutive hearts (280 ±â€…42.1 g) was successful and no significant differences were found between working heart parameters at baseline and after 24 h of perfusion. There was no difference between initial and final measurements of LA mean pressures (5.0 ±â€…3.1 versus 9.0 ±â€…6.5 mm Hg, P  = 0.22), left ventricular systolic pressures (44.3 ±â€…7.2 versus 39.1 ±â€…9.0 mm Hg, P  = 0.13), mean aortic pressures (30.9 ±â€…5.8 versus 28.1 ±â€…8.1 mm Hg, P  = 0.37), and coronary resistance (0.174 ±â€…0.046 versus 0.173 ±â€…0.066 mL/min/g, P  = 0.90). There were also no significant differences between lactate (2.4 ±â€…0.5 versus 2.6 ±â€…0.4 mmol/L, P  = 0.17) and glucose (173 ±â€…75 versus 156 ±â€…70 mg/dL, P  = 0.37). CONCLUSIONS: A novel model using intermittent LA perfusion to create a coronary flow-only working heart mode for assessment of ex vivo cardiac function has been successfully developed.


Asunto(s)
Modelos Animales , Perfusión , Animales , Perfusión/métodos , Factores de Tiempo , Preparación de Corazón Aislado , Porcinos , Circulación Coronaria , Preservación de Órganos/métodos , Función Ventricular Izquierda , Trasplante de Corazón , Sus scrofa
11.
J Pediatr Surg ; 59(1): 103-108, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37858393

RESUMEN

BACKGROUND: Children with end-stage lung disease are commonly managed with extracorporeal life support (ECLS) as a bridge to lung transplantation. A pumpless artificial lung (MLung) is a portable alternative to ECLS and it allows for ambulation. Both ECLS and pumpless artificial lungs require systemic anticoagulation which is associated with hemorrhagic complications. We tested the MLung with a novel Nitric Oxide (NO) Surface Anticoagulation (NOSA) system, to provide local anticoagulation for 72 h of support in a pediatric-size ovine model. METHODS: Four mini sheep underwent thoracotomy and cannulation of the pulmonary artery (inflow) and left atrium (outflow), recovered and were monitored for 72hr. The circuit tubing and connectors were coated with the combination of an NO donor (diazeniumdiolated dibutylhexanediamine; DBHD-N2O2) and argatroban. The animals were connected to the MLung and 100 ppm of NO was added to the sweep gas. Systemic hemodynamics, blood chemistry, blood gases, and methemoglobin were collected. RESULTS: Mean device flow was 836 ± 121 mL/min. Device outlet saturation was 97 ± 4%. Pressure drop across the lung was 3.5 ± 1.5 mmHg and resistance was 4.3 ± 1.7 mmHg/L/min. Activated clotting time averaged 170 ± 45s. Methemoglobin was 2.9 ± 0.8%. Platelets declined from 590 ± 101 at baseline to 160 ± 90 at 72 h. NO flux (x10-10 mol/min/cm2) of the NOSA circuit averaged 2.8 ± 0.6 (before study) and 1.9 ± 0.1 (72 h) and across the MLung 18 ± 3 NO flux was delivered. CONCLUSION: The MLung is a more portable form of ECLS that demonstrates effective gas exchange for 72 h without hemodynamic changes. Additionally, the NOSA system successfully maintained local anticoagulation without evidence of systemic effects.


Asunto(s)
Oxigenación por Membrana Extracorpórea , Óxido Nítrico , Animales , Humanos , Ovinos , Niño , Metahemoglobina , Pulmón , Hemodinámica , Anticoagulantes/farmacología , Anticoagulantes/uso terapéutico
12.
Pediatr Res ; 95(1): 93-101, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37087539

RESUMEN

BACKGROUND: Clinical translation of the extracorporeal artificial placenta (AP) is impeded by the high risk for intracranial hemorrhage in extremely premature newborns. The Nitric Oxide Surface Anticoagulation (NOSA) system is a novel non-thrombogenic extracorporeal circuit. This study aims to test the NOSA system in the AP without systemic anticoagulation. METHODS: Ten extremely premature lambs were delivered and connected to the AP. For the NOSA group, the circuit was coated with DBHD-N2O2/argatroban, 100 ppm nitric oxide was blended into the sweep gas, and no systemic anticoagulation was given. For the Heparin control group, a non-coated circuit was used and systemic anticoagulation was administered. RESULTS: Animals survived 6.8 ± 0.6 days with normal hemodynamics and gas exchange. Neither group had any hemorrhagic or thrombotic complications. ACT (194 ± 53 vs. 261 ± 86 s; p < 0.001) and aPTT (39 ± 7 vs. 69 ± 23 s; p < 0.001) were significantly lower in the NOSA group than the Heparin group. Platelet and leukocyte activation did not differ significantly from baseline in the NOSA group. Methemoglobin was 3.2 ± 1.1% in the NOSA group compared to 1.6 ± 0.6% in the Heparin group (p < 0.001). CONCLUSIONS: The AP with the NOSA system successfully supported extremely premature lambs for 7 days without significant bleeding or thrombosis. IMPACT: The Nitric Oxide Surface Anticoagulation (NOSA) system provides effective circuit-based anticoagulation in a fetal sheep model of the extracorporeal artificial placenta (AP) for 7 days. The NOSA system is the first non-thrombogenic circuit to consistently obviate the need for systemic anticoagulation in an extracorporeal circuit for up to 7 days. The NOSA system may allow the AP to be implemented clinically without systemic anticoagulation, thus greatly reducing the intracranial hemorrhage risk for extremely low gestational age newborns. The NOSA system could potentially be applied to any form of extracorporeal life support to reduce or avoid systemic anticoagulation.


Asunto(s)
Oxigenación por Membrana Extracorpórea , Nacimiento Prematuro , Trombosis , Embarazo , Humanos , Femenino , Ovinos , Animales , Óxido Nítrico , Placenta/fisiología , Heparina , Hemorragia/complicaciones , Trombosis/prevención & control , Anticoagulantes/farmacología , Hemorragias Intracraneales/complicaciones
13.
Transplant Proc ; 55(9): 2241-2246, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37783593

RESUMEN

BACKGROUND: Historically, cardiac transplantation relied on cold static storage at 5 °C for ex vivo myocardial preservation. Currently, machine perfusion is the standard of care at many transplant centers. These storage methods are limited to 12 hours. We sought to evaluate the efficacy of hemofiltration and filtrate replacement in adult porcine hearts using normothermic heart perfusion (NEVHP) for 24 hours. METHODS: We performed 24-hour NEVHP on 5 consecutive hearts. After anesthetic induction, sternotomy, cardioplegia administration, explantation, and back-table instrumentation, NEVHP was initiated in beating, unloaded mode. After 1 hour, plasma exchange was performed, and hemofiltration was initiated. Heart function parameters and arterial blood gasses were obtained hourly. RESULTS: All hearts (n = 5) were viable at the 24-hour mark. The average left ventricular systolic pressure at the beginning of the prep was 36.6 ± 7.9 mm Hg compared with 27 ± 5.5 mm Hg at the end. Coronary resistance at the beginning of prep was 0.79 ± 0.10 mm Hg/L/min and 0.93 ± 0.28 mm Hg/L/min at the end. Glucose levels averaged 223 ± 13.9 mg/dL, and the lactate average at the termination of prep was 2.6 ± 0.3 mmol/L. CONCLUSIONS: We successfully perfused adult porcine hearts at normothermic temperatures for 24 hours with results comparable to our pediatric porcine heart model. The next step in our research is NEVHP evaluation in a working mode using left atrial perfusion.


Asunto(s)
Trasplante de Corazón , Hemofiltración , Humanos , Adulto , Niño , Porcinos , Animales , Corazón , Trasplante de Corazón/métodos , Perfusión/métodos , Ácido Láctico , Preservación de Órganos/métodos
15.
Crit Care Explor ; 5(5): e0902, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37181541

RESUMEN

Prolonged cardiac arrest (CA) causes microvascular thrombosis which is a potential barrier to organ reperfusion during extracorporeal cardiopulmonary resuscitation (ECPR). The aim of this study was to test the hypothesis that early intra-arrest anticoagulation during cardiopulmonary resuscitation (CPR) and thrombolytic therapy during ECPR improve recovery of brain and heart function in a porcine model of prolonged out-of-hospital CA. DESIGN: Randomized interventional trial. SETTING: University laboratory. SUBJECTS: Swine. INTERVENTIONS: In a blinded study, 48 swine were subjected to 8 minutes of ventricular fibrillation CA followed by 30 minutes of goal-directed CPR and 8 hours of ECPR. Animals were randomized into four groups (n = 12) and given either placebo (P) or argatroban (ARG; 350 mg/kg) at minute 12 of CA and either placebo (P) or streptokinase (STK, 1.5 MU) at the onset of ECPR. MEASUREMENTS AND MAIN RESULTS: Primary outcomes included recovery of cardiac function measured by cardiac resuscitability score (CRS: range 0-6) and recovery of brain function measured by the recovery of somatosensory-evoked potential (SSEP) cortical response amplitude. There were no significant differences in recovery of cardiac function as measured by CRS between groups (p = 0.16): P + P 2.3 (1.0); ARG + P = 3.4 (2.1); P + STK = 1.6 (2.0); ARG + STK = 2.9 (2.1). There were no significant differences in the maximum recovery of SSEP cortical response relative to baseline between groups (p = 0.73): P + P = 23% (13%); ARG + P = 20% (13%); P + STK = 25% (14%); ARG + STK = 26% (13%). Histologic analysis demonstrated reduced myocardial necrosis and neurodegeneration in the ARG + STK group relative to the P + P group. CONCLUSIONS: In this swine model of prolonged CA treated with ECPR, early intra-arrest anticoagulation during goal-directed CPR and thrombolytic therapy during ECPR did not improve initial recovery of heart and brain function but did reduce histologic evidence of ischemic injury. The impact of this therapeutic strategy on the long-term recovery of cardiovascular and neurological function requires further investigation.

16.
ASAIO J ; 69(7): e301-e307, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37146595

RESUMEN

Portable artificial lung (AL) systems are under development, but there are few technologies available that adjust the carbon dioxide (CO 2 ) removal in response to changes in patient metabolic needs. Our work describes the second generation of a CO 2 -based portable servoregulation system that automatically adjusts CO 2 removal in ALs. Four adult sheep (68 ± 14.3 kg) were used to test the servoregulator. The servoregulator controlled air sweep flow through the lung to meet a target exhaust gas CO 2 (tEGCO 2 ) level in normocapnic and hypercapnic (arterial partial pressure of CO 2 [PaCO 2 ] >60 mm Hg) conditions at varying flow rates (0.5-1.5 L/min) and at tEGCO 2 levels of 10, 20, and 40 mm Hg. In hypercapnic sheep, average post-AL blood partial pressure of CO 2 (pCO 2 ) values were 22.4 ± 3.6 mm Hg for tEGCO 2 of 10 mm Hg, 28.0 ± 4.1 mm Hg for tEGCO 2 of 20 mm Hg and 40.6 ± 4.8 mm Hg for tEGCO 2 of 40 mm Hg. The controller successfully and automatically adjusted the sweep gas flow to rapidly (<10 minutes) meet the tEGCO 2 level when challenged with changes in inlet blood flow or target EGCO 2 levels for all animals. These in vivo data demonstrate an important step toward portable ALs that can automatically modulate CO 2 removal and allow for substantial changes in patient activity or disease status in ambulatory applications.


Asunto(s)
Oxigenación por Membrana Extracorpórea , Hemodinámica , Animales , Ovinos , Dióxido de Carbono , Hipercapnia , Pulmón/metabolismo
17.
Bioengineering (Basel) ; 9(10)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36290561

RESUMEN

Artificial lung (AL) systems provide respiratory support to patients with severe lung disease, but none can adapt to the changing respiratory needs of the patients. Precisely, none can automatically adjust carbon dioxide (CO2) removal from the blood in response to changes in patient activity or disease status. Because of this, all current systems limit patient comfort, activity level, and rehabilitation. A portable servoregulation controller that automatically modulates CO2 removal in ALs to meet the real-time metabolic demands of the patient is described. The controller is based on a proportional-integral-derivative (PID) based closed-loop feedback control system that modulates sweep gas (air) flow through the AL to maintain a target exhaust gas CO2 partial pressure (target EGCO2 or tEGCO2). The presented work advances previous research by (1) using gas-side sensing that avoids complications and clotting associated with blood-based sensors, (2) incorporating all components into a portable, battery-powered package, and (3) integrating smart moisture removal from the AL to enable long term operation. The performance of the controller was tested in vitro for ∼12 h with anti-coagulated bovine blood and 5 days with distilled water. In tests with blood, the sweep gas flow was automatically adjusted by the controller rapidly (<2 min) meeting the specified tEGCO2 level when confronted with changes in inlet blood partial pressure of CO2 (pCO2) levels at various AL blood flows. Overall, the CO2 removal from the AL showed a strong correlation with blood flow rate and blood pCO2 levels. The controller successfully operated continuously for 5 days when tested with water. This study demonstrates an important step toward ambulatory AL systems that automatically modulate CO2 removal as required by lung disease patients, thereby allowing for physiotherapy, comfort, and activity.

18.
ASAIO J ; 68(10): 1282-1289, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36194099

RESUMEN

Currently, normothermic ex vivo heart perfusion (NEVHP) is limited to 6-12 hours. NEVHP for 24 hours or more would allow organ treatment, assessment of organ function, and near-perfect recipient matching. We present a model of NEVHP using continuous hemofiltration (HFn) with sustained myocardial viability up to 24 hours. Twenty hearts from 6-10 kg piglets were procured and maintained on our NEVHP circuit. HFn hearts (n = 10) underwent NEVHP with HFn, whereas controls (n = 10) used NEVHP alone. All HFn vs. four controls were viable at 24 h (p = 0.004). At end perfusion, HFn hearts had higher left ventricular systolic pressure (51.5 ± 6.8 mm Hg, 38.3 ± 5.2 mm Hg, p = 0.05), lower coronary resistance (0.83 ± 0.11 mm Hg/mL/min, 1.18 ± 0.21mmHg/mL/min, p < 0.05), and lower serum lactate levels (2.9 ± 0.4 mmol/L, 4.1 ± 0.6 mmol/L, p < 0.0001) when compared to control hearts. HFn hearts also had less extensive myocardial damage and significantly less edema than control hearts with lower weight gain and wet-dry ratios. Using our circuit, NEVHP for 24 hours is possible with HFn and allows for preservation of myocardial function, improved tissue viability, decreased tissue edema, and less myocardial injury.


Asunto(s)
Trasplante de Corazón , Hemofiltración , Animales , Edema , Corazón , Lactatos , Miocardio , Preservación de Órganos , Perfusión , Porcinos
19.
J Pediatr Surg ; 57(11): 614-623, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35953340

RESUMEN

INTRODUCTION: For children with end-stage lung disease that cannot wean from extracorporeal life support (ECLS), a wearable artificial lung would permit extubation and provide a bridge to recovery or transplantation. We evaluate the function of the novel Pediatric MLung-a low-resistance, pumpless artificial lung developed specifically for children-in healthy animal subjects. METHODS: Adolescent "mini sheep" weighing 12-20 kg underwent left thoracotomy, cannulation of the main pulmonary artery (PA; inflow) and left atrium (outflow), and connection to the MLung. RESULTS: Thirteen sheep were studied; 6 were supported for 7 days. Mean PA pressure was 23.9 ± 6.9 mmHg. MLung blood flow was 633±258 mL/min or 30.0 ± 16.0% of CO. MLung pressure drop was 4.4 ± 3.4 mmHg. Resistance was 7.2 ± 5.2 mmHg/L/min. Device outlet oxygen saturation was 99.0 ± 3.3% with inlet saturation 53.8 ± 7.3%. Oxygen delivery was 41.1 ± 18.4 mL O2/min (maximum 84.9 mL/min) or 2.8 ± 1.5 mL O2/min/kg. Platelet count significantly decreased; no platelet transfusions were required. Plasma free hemoglobin significantly increased only on day 7, at which point 2 of the animals had plasma free hemoglobin levels above 50 mg/dL. CONCLUSION: The MLung provides adequate gas exchange at appropriate blood flows for the pediatric population in a PA-to-LA configuration. Further work remains to improve the biocompatibility of the device. LEVEL OF EVIDENCE: N/A.


Asunto(s)
Órganos Artificiales , Oxigenación por Membrana Extracorpórea , Animales , Niño , Hemoglobinas , Humanos , Pulmón , Oxígeno , Ovinos
20.
ASAIO J ; 68(8): 1071-1073, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35905308

RESUMEN

A pumpless artificial lung has the potential to provide a bridge to recovery or transplantation in children with respiratory failure. Pulmonary artery inflow and left atrial outflow are necessary for low-gradient, pumpless systems; however, long-term cannulation of the fragile left atrium remains problematic. In this technique, the left atrium and pulmonary artery were exposed through a left anterior thoracotomy. Inflow to the artificial lung was created using an end-to-side anastomosis with the pulmonary artery. Device outflow was established through the left atrium. A single-stage venous cannula was passed through a free PTFE graft. Using polypropylene with pledgets, two concentric purse-string sutures were placed in the dome of the left atrium. The venous cannula was inserted. The graft was slid down the cannula and circumferentially secured to the adjacent left atrial tissue and pledgets. The other end of the graft was secured to the cannula with silk ties. The procedure was successful in 10 sheep. Initial device blood flow was 969 ± 222 ml/min, which remained stable for up to 7 days with no anastomotic complications. This is an effective method of achieving secure, long-term left atrial cannulation without cardiopulmonary bypass for use in a low-resistance, pumpless artificial lung. And, most importantly, improves the ease and safety of cannula replacement and final decannulation when AL support is no longer required.


Asunto(s)
Cateterismo , Corazón Auxiliar , Animales , Puente Cardiopulmonar , Atrios Cardíacos/cirugía , Pulmón , Ovinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA