Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Support Care Cancer ; 32(8): 535, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39042280

RESUMEN

PURPOSE: Dysphagia, a serious symptom of oral cancer, is also the most common. Further, patients who are more uncertain regarding their illness tend to catastrophize, which may affect their rehabilitation and long-term survival rate. Considering this relationship, this study aimed to investigate the occurrence of dysphagia in Chinese patients with oral cancer and explore the correlation between catastrophic cognition, illness uncertainty, and dysphagia. METHODS: Applying a cross-sectional design, convenience sampling was used to recruit 180 patients with oral cancer. Advanced statistical methods were employed to analyze the mediating effects of catastrophic cognition on illness uncertainty and dysphagia. RESULTS: Chinese patients with oral cancer had a mean dysphagia score of 52.88 ± 10.95. Catastrophic cognition and illness uncertainty in patients with oral cancer were significantly positively correlated (r = 0.447, P < 0.001). There was a significant negative correlation between dysphagia score and catastrophic cognition (r = -0.385, P < 0.001), and between dysphagia and illness uncertainty (r = -0.522, P < 0.001). Bootstrapping results indicated that the mediating effect of catastrophic cognition between illness uncertainty and dysphagia was -0.07 (95% CI: [-0.15, -0.03]) and significant, and the mediation effect accounted for 15.6% of the total effect. CONCLUSIONS: Chinese patients with oral cancer have poor swallowing function. Results suggest that catastrophic cognition partially mediated the relationship between illness uncertainty and dysphagia in patients with oral cancer. Medical staff can improve patients' swallowing function by reducing the level of catastrophic cognition via decreasing the level of illness uncertainty.


Asunto(s)
Catastrofización , Cognición , Trastornos de Deglución , Neoplasias de la Boca , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , China/epidemiología , Estudios Transversales , Trastornos de Deglución/etiología , Trastornos de Deglución/psicología , Pueblos del Este de Asia , Neoplasias de la Boca/complicaciones , Neoplasias de la Boca/psicología , Encuestas y Cuestionarios , Incertidumbre
2.
Biomedicines ; 12(7)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39062120

RESUMEN

Autonomic nervous system (ANS) dysfunction is prevalent in end-stage kidney disease (ESKD) patients, carrying significant risks for morbidity and mortality. Heart rate variability (HRV) is a simple and non-invasive method to evaluate ANS functions and predict prognoses in specific patient populations. Since there is a lack of a clear understanding of the clinical significance of HRV in predicting prognoses in ESKD patients, an updated review on this topic is urgently warranted. The clinical significance of HRV in dialysis patients includes its associations with metabolic syndrome, nutritional status, intradialytic hypotension, vascular access failure, major adverse cardiovascular events, and mortality. These findings underscore the essential role of the autonomic reserve, which might denote the elevation of ANS activity as a response to external stimulus. Patients with a higher level of sympathetic activity at the resting stage, but who are unable to adequately elevate their sympathetic activity under stress might be susceptible to a worse outcome in critical circumstances. Further applications of HRV include HRV biofeedback, risk classification, and real-time HRV monitoring. Overall, HRV is an optimal tool for predicting prognoses in dialysis patients. Further study is encouraged in order to gain a clearer understanding of the clinical significance and application of HRV, and thereby enhance the care of ESKD patients.

3.
Vaccines (Basel) ; 12(6)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38932299

RESUMEN

Hand, foot, and mouth disease (HFMD) is a contagious viral infection predominantly affecting infants and young children, caused by multiple enteroviruses, including Enterovirus 71 (EV71), Coxsackievirus A16 (CA16), Coxsackievirus A10 (CA10), and Coxsackievirus A6 (CA6). The high pathogenicity of HFMD has garnered significant attention. Currently, there is no specific treatment or broad-spectrum preventive measure available for HFMD, and existing monovalent vaccines have limited impact on the overall incidence or prevalence of the disease. Consequently, with the emergence of new viral strains driven by vaccine pressure, there is an urgent need to develop strategies for the rapid response and control of new outbreaks. In this study, we demonstrated the broad protective effect of maternal antibodies against three types of HFMD by immunizing mother mice with a trivalent inactivated vaccine targeting EV71, CA16, and CA10, using a neonatal mouse challenge model. Based on the feasibility of maternal antibodies as a form of passive immunization to prevent HFMD, we prepared a multivalent antiviral milk by immunizing dairy cows with the trivalent inactivated vaccine to target multiple HFMD viruses. In the neonatal mouse challenge model, this immunized milk exhibited extensive passive protection against oral infections caused by the three HFMD viruses. Compared to vaccines, this strategy may offer a rapid and broadly applicable approach to providing passive immunity for the prevention of HFMD, particularly in response to the swift emergence and spread of new variants.

4.
Mikrochim Acta ; 191(7): 407, 2024 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898338

RESUMEN

A smartphone-based electrochemical aptasensing platform was developed for the point-of-care testing (POCT) of carcinoembryonic antigen (CEA) based on the ferrocene (Fc) and PdPt@PCN-224 dual-signal labeled strategy. The prepared PdPt@PCN-224 nanocomposite showed a strong catalytic property for the reduction of H2O2. Phosphate group-labeled aptamer could capture PdPt@PCN-224 by Zr-O-P bonds to form PdPt@PCN-224-P-Apt. Therefore, a dual signal labeled probe was formed by the hybridization between Fc-DNA and PdPt@PCN-224-P-Apt. The presence of CEA forced PdPt@PCN-224-P-Apt to leave the electrode surface due to the specific affinity, leading to the decrease of the reduction current of H2O2. At the same time, the Fc-DNA strand changed to hairpin structure, which made Fc closer to the electrode and resulted in the increase of the oxidation current of Fc. Thus, CEA can be accurately determined through both signals: the decrease of H2O2 reduction current and the increase of Fc oxidation current, which could avoid the false positive signal. Under the optimal conditions, the prepared aptasensor exhibited a wide linear range from 1 pg·mL-1 to 100 ng·mL-1 and low detection limits of 0.98 pg·mL-1 and 0.27 pg·mL-1 with Fc and PdPt@PCN-224 as signal labels, respectively. The aptasensor developed in this study has successfully demonstrated its capability to detect CEA in real human serum samples. These findings suggest that the proposed sensing platform will hold great potential for clinical tumor diagnosis and monitoring.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Antígeno Carcinoembrionario , Técnicas Electroquímicas , Compuestos Ferrosos , Peróxido de Hidrógeno , Límite de Detección , Paladio , Pruebas en el Punto de Atención , Teléfono Inteligente , Antígeno Carcinoembrionario/sangre , Antígeno Carcinoembrionario/análisis , Aptámeros de Nucleótidos/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Humanos , Técnicas Biosensibles/métodos , Peróxido de Hidrógeno/química , Paladio/química , Compuestos Ferrosos/química , Metalocenos/química , Platino (Metal)/química
5.
Animal Model Exp Med ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747004

RESUMEN

BACKGROUND: Hand, foot and mouth disease (HFMD) is a common infectious disease caused by viral infection by a variety of enteroviruses, with coxsackievirus A 10 (CA10) having become more prevalent in recent years. METHODS: In this study, models of CA10 infection were established in 7-day-old Institute of Cancer Research (ICR) mice by intraperitoneal injection to analyze the pathogenicity of the virus. RNA sequencing analysis was used to screen the differentially expressed genes (DEGs) after CA10 infection. Coxsackievirus A 16 (CA16) and enterovirus 71 (EV71) infections were also compared with CA10. RESULTS: After CA10 virus infection, the mice showed paralysis of the hind limbs at 3 days post infection and weight loss at 5 days post infection. We observed viral replication in various tissues and severe inflammatory cell infiltration in skeletal muscle. The RNA-sequencing analysis showed that the DEGs in blood, muscle, thymus and spleen showed heterogeneity after CA10 infection and the most up-regulated DEGs in muscle were enriched in immune-related pathways. Compared with CA16 and EV71 infection, CA10 may have an inhibitory effect on T helper (Th) cell differentiation and cell growth. Additionally, the common DEGs in the three viruses were most enriched in the immune system response, including the Toll-like receptor pathway and the nucleotide-binding and oligomerization domain (NOD)-like pathway. CONCLUSIONS: Our findings revealed a group of genes that coordinate in response to CA10 infection, which increases our understanding of the pathological mechanism of HFMD.

6.
Animal Model Exp Med ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760905

RESUMEN

BACKGROUND: SARS-CoV-2, first identified in late 2019, has given rise to numerous variants of concern (VOCs), posing a significant threat to human health. The emergence of Omicron BA.1.1 towards the end of 2021 led to a pandemic in early 2022. At present, the lethal mouse model for the study of SARS-CoV-2 needs supplementation, and the alterations in neutrophils and monocytes caused by different strains remain to be elucidated. METHODS: Human ACE2 transgenic mice were inoculated with the SARS-CoV-2 prototype and Omicron BA.1, respectively. The pathogenicity of the two strains was evaluated by observing clinical symptoms, viral load and pathology. Complete blood count, immunohistochemistry and flow cytometry were performed to detect the alterations of neutrophils and monocytes caused by the two strains. RESULTS: Our findings revealed that Omicron BA.1 exhibited significantly lower virulence compared to the SARS-CoV-2 prototype in the mouse model. Additionally, we observed a significant increase in the proportion of neutrophils late in infection with the SARS-CoV-2 prototype and Omicron BA.1. We found that the proportion of monocytes increased at first and then decreased. The trends in the changes in the proportions of neutrophils and monocytes induced by the two strains were similar. CONCLUSION: Our study provides valuable insights into the utility of mouse models for simulating the severe disease of SARS-CoV-2 prototype infection and the milder manifestation associated with Omicron BA.1. SARS-CoV-2 prototype and Omicron BA.1 resulted in similar trends in the changes in neutrophils and monocytes.

7.
Anal Chem ; 96(21): 8365-8372, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38717986

RESUMEN

Simultaneous sensitive and precise determination of multibiomarkers is of great significance for improving detection efficiency, reducing diagnosis and treatment expenses, and elevating survival rates. However, the development of simple and portable biosensors for simultaneous determination of multiplexed targets in biological fluids still faces challenges. Herein, a unique and versatile immobilization-free dual-target electrochemical biosensing platform, which combines distinguishable magnetic signal reporters with buoyancy-magnetism separation, was designed and constructed for simultaneous detection of carcinoembryonic (CEA) and α-fetoprotein (AFP) in intricate biological fluids. To construct such distinguishable magnetic signal reporters with signal transduction, amplification, and output, secondary antibodies of CEA and AFP were respectively functionalized on methylene blue (MB) and 6-(ferrocenyl)hexanethiol (FeC) modified Fe3O4@Au magnetic nanocomposites. Meanwhile, a multifunctional flotation probe with dual target recognition, capture, and isolation capability was prepared by conjugating primary antibodies (Ab1-CEA, Ab1-AFP) to hollow buoyant microspheres. The target antigens of CEA and AFP can trigger a flotation-mediated sandwich-type immunoreaction and capture a certain amount of the distinguishable magnetic signal reporter, which enables the conversion of the target CEA and AFP quantities to the signal of the potential-resolved MB and FeC. Thus, the MB and FeC currents of magnetically adsorbed distinguishable magnetic reporters can be used to determine the CEA and AFP targets simultaneously and precisely. Accordingly, the proposed strategy exhibited a delightful linear response for CEA and AFP in the range of 100 fg·mL-1-100 ng·mL-1 with detection limits of 33.34 and 17.02 fg·mL-1 (S/N = 3), respectively. Meanwhile, no significant nonspecific adsorption and cross-talk were observed. The biosensing platform has shown satisfactory performance in the determination of real clinical samples. More importantly, the proposed approach can be conveniently extended to universal detection just by simply substituting biorecognition events. Thus, this work opens up a new promising perspective for dual and even multiple targets and offers promising potential applications in clinical diagnosis.


Asunto(s)
Técnicas Biosensibles , Antígeno Carcinoembrionario , Técnicas Electroquímicas , alfa-Fetoproteínas , alfa-Fetoproteínas/análisis , alfa-Fetoproteínas/inmunología , Antígeno Carcinoembrionario/análisis , Antígeno Carcinoembrionario/inmunología , Técnicas Biosensibles/métodos , Humanos , Inmunoensayo/métodos , Oro/química , Límite de Detección
8.
Talanta ; 274: 126023, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38583328

RESUMEN

Dual-potential ratiometric electrochemiluminescence (ECL) is in favor of resistance to environmental interference. However, two kinds of emitters or coreactants, and a wide scan potential range (>2 V) are mandatory. This work developed a new dual-potential ratiometric ECL sensor for detection of carcinoembryonic antigen (CEA) using single emitter (luminol) and single coreactant (H2O2) with a mild potential range from -0.1 to 0.6 V. Luminol could produce a strong cathodic ECL (Ec) induced by hydroxyl radicals (HO‧) from the reduction of H2O2, and a relatively weak anodic ECL (Ea). After the ferrocene modified CEA aptamer (Apt-Fc) was attached, Fc could promote Ea by catalyzing the oxidation of H2O2, and reduce Ec by consuming HO‧. With the cycling amplification of the exonuclease I, CEA could substantially reduce the amount of Apt-Fc, resulting in the decrease of Ea and the rise of Ec. So, the ratio of Ec to Ea (Ec/Ea) was used as the detection signal, realizing the sensitive determination of CEA from 0.1 pg mL-1 to 10 ng mL-1 with a LOD of 41.85 fg mL-1 (S/N = 3). The developed sensor demonstrated excellent specificity, stability and reproducibility, with satisfactory results in practical detection.


Asunto(s)
Aptámeros de Nucleótidos , Antígeno Carcinoembrionario , Técnicas Electroquímicas , Peróxido de Hidrógeno , Mediciones Luminiscentes , Luminol , Antígeno Carcinoembrionario/análisis , Antígeno Carcinoembrionario/sangre , Técnicas Electroquímicas/métodos , Humanos , Mediciones Luminiscentes/métodos , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/análisis , Luminol/química , Aptámeros de Nucleótidos/química , Límite de Detección , Técnicas Biosensibles/métodos , Metalocenos/química , Compuestos Ferrosos/química
9.
Cell Rep ; 43(2): 113738, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38354087

RESUMEN

Mitochondrial dysfunction is a hallmark of cellular senescence, with the loss of mitochondrial function identified as a potential causal factor contributing to senescence-associated decline in cellular functions. Our recent findings revealed that ectopic expression of the pluripotency transcription factor NANOG rejuvenates dysfunctional mitochondria of senescent cells by rewiring metabolic pathways. In this study, we report that NANOG restores the expression of key enzymes, PYCR1 and PYCR2, in the proline biosynthesis pathway. Additionally, senescent mesenchymal stem cells manifest severe mitochondrial respiratory impairment, which is alleviated through proline supplementation. Proline induces mitophagy by activating AMP-activated protein kinase α and upregulating Parkin expression, enhancing mitochondrial clearance and ultimately restoring cell metabolism. Notably, proline treatment also mitigates several aging hallmarks, including DNA damage, senescence-associated ß-galactosidase, inflammatory cytokine expressions, and impaired myogenic differentiation capacity. Overall, this study highlights the role of proline in mitophagy and its potential in reversing senescence-associated mitochondrial dysfunction and aging hallmarks.


Asunto(s)
Mitocondrias , Enfermedades Mitocondriales , Humanos , Senescencia Celular , Prolina/farmacología
10.
J Innate Immun ; 16(1): 80-95, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38224674

RESUMEN

BACKGROUND: Neutrophils are the first line of defense against pathogens. They are divided into multiple subpopulations during development and kill pathogens through various mechanisms. Neutrophils are considered one of the markers of severe COVID-19. SUMMARY: In-depth research has revealed that neutrophil subpopulations have multiple complex functions. Different subsets of neutrophils play an important role in the progression of COVID-19. KEY MESSAGES: In this review, we provide a detailed overview of the developmental processes of neutrophils at different stages and their recruitment and activation after SARS-CoV-2 infection, aiming to elucidate the changes in neutrophil subpopulations, characteristics, and functions after infection and provide a reference for mechanistic research on neutrophil subpopulations in the context of SARS-CoV-2 infection. In addition, we have also summarized research progress on potential targeted drugs for neutrophil immunotherapy, hoping to provide information that aids the development of therapeutic drugs for the clinical treatment of critically ill COVID-19 patients.


Asunto(s)
COVID-19 , Neutrófilos , SARS-CoV-2 , Humanos , COVID-19/inmunología , Neutrófilos/inmunología , SARS-CoV-2/inmunología , Inmunoterapia/métodos , Activación Neutrófila , Animales , Infiltración Neutrófila/inmunología
11.
J Virol ; 98(2): e0135823, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38226810

RESUMEN

Hand, foot, and mouth disease (HFMD) is caused by more than 20 pathogenic enteroviruses belonging to the Picornaviridae family and Enterovirus genus. Since the introduction of the enterovirus-71 (EV71) vaccine in 2016, the number of HFMD cases caused by EV71 has decreased. However, cases of infections caused by other enteroviruses, such as coxsackievirus A6 (CA6) and coxsackievirus A10, have been increasing accordingly. In this study, we used a clinical isolate of CA6 to establish an intragastric infection mouse model using 7-day-old mice to mimic the natural transmission route, by which we investigated the differential gene expression profiles associated with virus infection and pathogenicity. After intragastric infection, mice exhibited hind limb paralysis symptoms and weight loss, similar to those reported for EV71 infection in mice. The skeletal muscle was identified as the main site of virus replication, with a peak viral load reaching 2.31 × 107 copies/mg at 5 dpi and increased infiltration of inflammatory cells. RNA sequencing analysis identified differentially expressed genes (DEGs) after CA6 infection. DEGs in the blood, muscle, brain, spleen, and thymus were predominantly enriched in immune system responses, including pathways such as Toll-like receptor signaling and PI3K-Akt signaling. Our study has unveiled the genes involved in the host immune response during CA6 infection, thereby enhancing our comprehension of the pathological mechanism of HFMD.IMPORTANCEThis study holds great significance for the field of hand, foot, and mouth disease (HFMD). It not only delves into the disease's etiology, transmission pathways, and severe complications but also establishes a novel mouse model that mimics the natural coxsackievirus A6 infection process, providing a pivotal platform to delve deeper into virus replication and pathogenic mechanisms. Additionally, utilizing RNA-seq technology, it unveils the dynamic gene expression changes during infection, offering valuable leads for identifying novel therapeutic drug targets. This research has the potential to enhance our understanding of HFMD, offering fresh perspectives for disease prevention and treatment and positively impacting children's health worldwide.


Asunto(s)
Infecciones por Enterovirus , Enterovirus , Enfermedad de Boca, Mano y Pie , Animales , Niño , Humanos , Ratones , Anticuerpos Antivirales , Modelos Animales de Enfermedad , Enterovirus/patogenicidad , Enterovirus/fisiología , Enterovirus Humano A , Infecciones por Enterovirus/patología , Infecciones por Enterovirus/virología , Expresión Génica , Enfermedad de Boca, Mano y Pie/genética , Fosfatidilinositol 3-Quinasas , Virulencia
12.
Lab Chip ; 24(2): 367-374, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38126214

RESUMEN

Carcinoembryonic antigen (CEA) is a biomarker of high expression in cancer cells. Highly sensitive and selective detection of CEA holds significant clinical value in the diagnosis, monitoring and efficacy evaluation of malignant tumors. In this work, a smartphone-based electrochemical point-of-care testing (POCT) platform for the detection of CEA was developed based on a Zr6MOF signal amplification strategy. Ferrocene labeled DNA strands (Fc-DNA) were immobilized on Zr6MOFs to form a Fc-DNA/Zr6MOF signal probe. Double-stranded DNA (dsDNA) formed by complementary DNA (cDNA) and CEA aptamer was assembled on a screen-printed electrode via an Au-S bond. When CEA was added, the aptamer specifically bound with CEA, resulting in the exposure of cDNA. Then, Fc-DNA/Zr6MOF signal probes were introduced on the electrode surface through hybridization between Fc-DNA and cDNA. The detection of CEA was realized by measuring the electrochemical response of Fc. The POCT device was made by connecting a modified electrode with a smartphone through a Sensit Smart USB flash disk. Due to the signal amplification of Zr6MOFs, this POCT platform exhibited high sensitivity, wide linear range, and low detection limit for CEA detection. The developed POCT platform has been used for the detection of CEA in actual human serum samples with satisfactory results.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Humanos , Antígeno Carcinoembrionario , ADN Complementario , Teléfono Inteligente , ADN/química , Aptámeros de Nucleótidos/química , Técnicas Electroquímicas , Límite de Detección , Oro/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA