Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Sci Adv ; 9(11): eadd3243, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36930718

RESUMEN

HDAC3 is one of the main targets of histone deacetylase (HDAC) inhibitors in clinical development as cancer therapies, yet the in vivo role of HDAC3 in solid tumors is unknown. We identified a critical role for HDAC3 in Kras-mutant lung cancer. Using genetically engineered mouse models (GEMMs), we found that HDAC3 is required for lung tumor growth in vivo. HDAC3 was found to direct and enhance the transcription effects of the lung cancer lineage transcription factor NKX2-1 to mediate expression of a common set of target genes. We identified FGFR1 as a critical previously unidentified target of HDAC3. Leveraging this, we identified that an HDAC3-dependent transcriptional cassette becomes hyperactivated as Kras/LKB1-mutant cells develop resistance to the MEK inhibitor trametinib, and this can be reversed by treatment with the HDAC1/HDAC3 inhibitor entinostat. We found that the combination of entinostat plus trametinib treatment elicits therapeutic benefit in the Kras/LKB1 GEMM.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Histona Desacetilasas , Neoplasias Pulmonares , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Piridinas , Histona Desacetilasas/genética
2.
Cell Rep ; 29(10): 3331-3348.e7, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31801093

RESUMEN

Metformin is the front-line treatment for type 2 diabetes worldwide. It acts via effects on glucose and lipid metabolism in metabolic tissues, leading to enhanced insulin sensitivity. Despite significant effort, the molecular basis for metformin response remains poorly understood, with a limited number of specific biochemical pathways studied to date. To broaden our understanding of hepatic metformin response, we combine phospho-protein enrichment in tissue from genetically engineered mice with a quantitative proteomics platform to enable the discovery and quantification of basophilic kinase substrates in vivo. We define proteins whose binding to 14-3-3 are acutely regulated by metformin treatment and/or loss of the serine/threonine kinase, LKB1. Inducible binding of 250 proteins following metformin treatment is observed, 44% of which proteins bind in a manner requiring LKB1. Beyond AMPK, metformin activates protein kinase D and MAPKAPK2 in an LKB1-independent manner, revealing additional kinases that may mediate aspects of metformin response. Deeper analysis uncovered substrates of AMPK in endocytosis and calcium homeostasis.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Metformina/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Calcio/metabolismo , Línea Celular , Endocitosis/efectos de los fármacos , Células HEK293 , Homeostasis/efectos de los fármacos , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Fosforilación , Proteína Quinasa C/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteómica/métodos
3.
Cancer Discov ; 9(11): 1606-1627, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31350328

RESUMEN

Mutations in the LKB1 (also known as STK11) tumor suppressor are the third most frequent genetic alteration in non-small cell lung cancer (NSCLC). LKB1 encodes a serine/threonine kinase that directly phosphorylates and activates 14 AMPK family kinases ("AMPKRs"). The function of many of the AMPKRs remains obscure, and which are most critical to the tumor-suppressive function of LKB1 remains unknown. Here, we combine CRISPR and genetic analysis of the AMPKR family in NSCLC cell lines and mouse models, revealing a surprising critical role for the SIK subfamily. Conditional genetic loss of Sik1 revealed increased tumor growth in mouse models of Kras-dependent lung cancer, which was further enhanced by loss of the related kinase Sik3. As most known substrates of the SIKs control transcription, gene-expression analysis was performed, revealing upregulation of AP1 and IL6 signaling in common between LKB1- and SIK1/3-deficient tumors. The SIK substrate CRTC2 was required for this effect, as well as for proliferation benefits from SIK loss. SIGNIFICANCE: The tumor suppressor LKB1/STK11 encodes a serine/threonine kinase frequently inactivated in NSCLC. LKB1 activates 14 downstream kinases in the AMPK family controlling growth and metabolism, although which kinases are critical for LKB1 tumor-suppressor function has remained an enigma. Here we unexpectedly found that two understudied kinases, SIK1 and SIK3, are critical targets in lung cancer.This article is highlighted in the In This Issue feature, p. 1469.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Células A549 , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP , Animales , Sistemas CRISPR-Cas , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Edición Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Ratones , Trasplante de Neoplasias , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Transducción de Señal , Carga Tumoral
4.
Cell Rep ; 26(1): 192-208.e6, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30605676

RESUMEN

The AMP-activated protein kinase (AMPK) is a highly conserved master regulator of metabolism, whose activation has been proposed to be therapeutically beneficial for the treatment of several metabolic diseases, including nonalcoholic fatty liver disease (NAFLD). NAFLD, characterized by excessive accumulation of hepatic lipids, is the most common chronic liver disease and a major risk factor for development of nonalcoholic steatohepatitis, type 2 diabetes, and other metabolic conditions. To assess the therapeutic potential of AMPK activation, we have generated a genetically engineered mouse model, termed iAMPKCA, where AMPK can be inducibly activated in vivo in mice in a spatially and temporally restricted manner. Using this model, we show that liver-specific AMPK activation reprograms lipid metabolism, reduces liver steatosis, decreases expression of inflammation and fibrosis genes, and leads to significant therapeutic benefits in the context of diet-induced obesity. These findings further support AMPK as a target for the prevention and treatment of NAFLD.


Asunto(s)
Proteínas Quinasas Activadas por AMP/uso terapéutico , Dieta Alta en Grasa/efectos adversos , Enfermedad del Hígado Graso no Alcohólico/etiología , Obesidad/etiología , Proteínas Quinasas Activadas por AMP/farmacología , Animales , Masculino , Ratones , Enfermedad del Hígado Graso no Alcohólico/genética , Obesidad/genética
5.
Cell Metab ; 29(2): 285-302.e7, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30415923

RESUMEN

AMPK, a conserved sensor of low cellular energy, can either repress or promote tumor growth depending on the context. However, no studies have examined AMPK function in autochthonous genetic mouse models of epithelial cancer. Here, we examine the role of AMPK in murine KrasG12D-mediated non-small-cell lung cancer (NSCLC), a cancer type in humans that harbors frequent inactivating mutations in the LKB1 tumor suppressor-the predominant upstream activating kinase of AMPK and 12 related kinases. Unlike LKB1 deletion, AMPK deletion in KrasG12D lung tumors did not accelerate lung tumor growth. Moreover, deletion of AMPK in KrasG12D p53f/f tumors reduced lung tumor burden. We identified a critical role for AMPK in regulating lysosomal gene expression through the Tfe3 transcription factor, which was required to support NSCLC growth. Thus, AMPK supports the growth of KrasG12D-dependent lung cancer through the induction of lysosomes, highlighting an unrecognized liability of NSCLC.


Asunto(s)
Proteínas Quinasas Activadas por AMP/fisiología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Animales , Línea Celular Tumoral , Mutación con Pérdida de Función , Ratones
6.
Cell Metab ; 25(2): 463-471, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28089566

RESUMEN

Metformin is the most widely prescribed drug for the treatment of type 2 diabetes. However, knowledge of the full effects of metformin on biochemical pathways and processes in its primary target tissue, the liver, is limited. One established effect of metformin is to decrease cellular energy levels. The AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) are key regulators of metabolism that are respectively activated and inhibited in acute response to cellular energy depletion. Here we show that metformin robustly inhibits mTORC1 in mouse liver tissue and primary hepatocytes. Using mouse genetics, we find that at the lowest concentrations of metformin that inhibit hepatic mTORC1 signaling, this inhibition is dependent on AMPK and the tuberous sclerosis complex (TSC) protein complex (TSC complex). Finally, we show that metformin profoundly inhibits hepatocyte protein synthesis in a manner that is largely dependent on its ability to suppress mTORC1 signaling.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Hígado/metabolismo , Metformina/farmacología , Complejos Multiproteicos/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Esclerosis Tuberosa/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Hígado/efectos de los fármacos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones Endogámicos C57BL , Ratones Noqueados , Especificidad de Órganos/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA