RESUMEN
Similarity between tasks is an understudied factor in research on cognitive flexibility. This behavioural experiment had 31 participants perform a task switch paradigm in which participants were required to switch between 4 tasks of varying similarity. The experiment was constructed in a way that simultaneously allows for investigating the impact of mental fatigue and task-rule congruency on the participants. The results indicate that similarity between tasks substantially impacts performance with different effects on RT and accuracy. While learning effects may have negated the impact of mental fatigue across the 5 experimental blocks, a significant decrease in performance was observed within blocks. Furthermore, the exploratory analysis proposes a novel interaction between task-rule incongruent trials and the task of the previous trial. These results support the notion that neither the interference view of cognitive flexibility nor the reconfiguration view are fully adequate at explaining task switch costs if similarity is added as a factor. The presented study presents strong evidence that fundamental findings in the domain of cognitive flexibility may not map linearly to more ecological settings where tasks are often more dissimilar.
Asunto(s)
Cognición , Tiempo de Reacción , Humanos , Cognición/fisiología , Masculino , Femenino , Adulto Joven , Adulto , Tiempo de Reacción/fisiología , Análisis y Desempeño de Tareas , Fatiga Mental/fisiopatología , Desempeño Psicomotor/fisiologíaRESUMEN
Brain-computer interfaces (BCIs) allow direct communication between one's central nervous system and a computer without any muscle movement hence by-passing the peripheral nervous system. They can restore disabled people's ability to interact with their environment, e.g. communication and wheelchair control. However, to this day their performance is still hindered by the non-stationarity of electroencephalography (EEG) signals, as well as their susceptibility to noise from the users' environment and from their own physiological activity. Moreover, a non-negligible amount of users struggle to use BCI systems based on motor imagery. In this paper, a new method based on the path signature is introduced to tackle this problem by using features which are different from the usual power-based ones. The path signature is a series of iterated integrals computed from a multidimensional path. It is invariant under translation and time reparametrization, which makes it a robust feature for multichannel EEG time series. The performance can be further boosted by combining the path signature with the gold standard Riemannian classifier in the BCI field exploiting the geometric structure of symmetric positive definite (SPD) matrices. The results obtained on publicly available datasets show that the signature method is more robust to inter-user variability than classical ones, especially on noisy and low-quality data. Hence, this study paves the way towards the use of mathematical tools that until now have been neglected, in order to tackle the EEG-based BCI variability issue. It also sheds light on the lead-lag relationship captured by path signature which seems relevant to assess the underlying neural mechanisms.
Asunto(s)
Interfaces Cerebro-Computador , Humanos , Imágenes en Psicoterapia , Movimiento/fisiología , Electroencefalografía/métodos , Sistema Nervioso Central , AlgoritmosRESUMEN
Considerable fundamental studies have focused on the mechanisms governing cognitive flexibility and the associated costs of switching between tasks. Task-switching costs refer to the phenomenon that reaction times and accuracy decrease briefly following the switch from one task to another. However, cognitive flexibility also impacts day-to-day life in many complex work environments where operators have to perform several different tasks. One major difference between typical tasks examined in fundamental studies and real-world applications is that fundamental studies often rely on much more similar tasks, which is not the case for real-world applications. In the latter, operators may switch between vastly dissimilar tasks. Therefore, this behavioural study aims to test if task-switching costs are different for switches between similar and dissimilar tasks. The proposed protocol has participants switch between 2 pairs of two tasks each. Between pairs, there is more dissimilarity, while the two tasks within each pair are more similar. In addition, this study examines the impact of mental fatigue and interference in form of confounding information on cognitive flexibility. To induce mental fatigue the participants' breaks between blocks will be limited. We expect that dissimilarity between tasks will result in greater task-switching costs.
Asunto(s)
Señales (Psicología) , Percepción Visual , Humanos , Tiempo de Reacción , Cognición , Fatiga Mental , Desempeño PsicomotorRESUMEN
Brain-Computer Interfaces and especially passive Brain-Computer interfaces (pBCI), with their ability to estimate and monitor user mental states, are receiving increasing attention from both the fundamental research and the applied research and development communities. Testing new pipelines and benchmarking classifiers and feature extraction algorithms is central to further research within this domain. Unfortunately, data sharing in pBCI research is still scarce. The COG-BCI database encompasses the recordings of 29 participants over 3 separate sessions with 4 different tasks (MATB, N-Back, PVT, Flanker) designed to elicit different mental states, for a total of over 100 hours of open EEG data. This dataset was validated on a subjective, behavioral and physiological level, to ensure its usefulness to the pBCI community. Furthermore, a proof of concept is given with an example of mental workload estimation pipeline and results, to ensure that the data can be used for the design and evaluation of pBCI pipelines. This body of work presents a large effort to promote the use of pBCIs in an open science framework.
Asunto(s)
Interfaces Cerebro-Computador , Electroencefalografía , Humanos , Algoritmos , CogniciónRESUMEN
Operators of complex systems across multiple domains (e.g., aviation, automotive, and nuclear power industry) are required to perform their tasks over prolonged and continuous periods of time. Mental fatigue as well as reduced cognitive flexibility, attention, and situational awareness all result from prolonged continuous use, putting at risk the safety and efficiency of complex operations. Mental state-based adaptive systems may be a solution to this problem. These systems infer the current mental state of an operator based on a selection of metrics ranging from operator independent measures (e.g., weather and time of day), to behavioral (e.g., reaction time and lane deviation) as well as physiological markers (e.g., electroencephalography and cardiac activity). The interaction between operator and system may then be adapted in one of many ways to mitigate any detected degraded cognitive state, thereby ensuring continued safety and efficiency. Depending on the task at hand and its specific problems, possible adaptations -usually based on machine learning estimations- e.g., include modifications of information, presentation modality or stimuli salience, as well as task scheduling. Research on adaptive systems is at the interface of several domains, including neuroergonomics, human factors, and human-computer interaction in an applied and ecological context, necessitating careful consideration of each of the aforementioned aspects. This article provides an overview of some of the key questions and aspects to be considered by researchers for the design of mental state-based adaptive systems, while also promoting their application during prolonged continuous use to pave the way toward safer and more efficient human-machine interaction.
RESUMEN
As is the case in several research domains, data sharing is still scarce in the field of Brain-Computer Interfaces (BCI), and particularly in that of passive BCIs-i.e., systems that enable implicit interaction or task adaptation based on a user's mental state(s) estimated from brain measures. Moreover, research in this field is currently hindered by a major challenge, which is tackling brain signal variability such as cross-session variability. Hence, with a view to develop good research practices in this field and to enable the whole community to join forces in working on cross-session estimation, we created the first passive brain-computer interface competition on cross-session workload estimation. This competition was part of the 3rd International Neuroergonomics conference. The data were electroencephalographic recordings acquired from 15 volunteers (6 females; average 25 y.o.) who performed 3 sessions-separated by 7 days-of the Multi-Attribute Task Battery-II (MATB-II) with 3 levels of difficulty per session (pseudo-randomized order). The data -training and testing sets-were made publicly available on Zenodo along with Matlab and Python toy code (https://doi.org/10.5281/zenodo.5055046). To this day, the database was downloaded more than 900 times (unique downloads of all version on the 10th of December 2021: 911). Eleven teams from 3 continents (31 participants) submitted their work. The best achieving processing pipelines included a Riemannian geometry-based method. Although better than the adjusted chance level (38% with an α at 0.05 for a 3-class classification problem), the results still remained under 60% of accuracy. These results clearly underline the real challenge that is cross-session estimation. Moreover, they confirmed once more the robustness and effectiveness of Riemannian methods for BCI. On the contrary, chance level results were obtained by one third of the methods-4 teams- based on Deep Learning. These methods have not demonstrated superior results in this contest compared to traditional methods, which may be due to severe overfitting. Yet this competition is the first step toward a joint effort to tackle BCI variability and to promote good research practices including reproducibility.
RESUMEN
Electroencephalography (EEG) is a widely used cerebral activity measuring device for both clinical and everyday life applications. In addition to denoising and potential classification, a crucial step in EEG processing is to extract relevant features. Topological data analysis (TDA) as an emerging tool enables to analyse and understand data from a different angle than traditionally used methods. As a higher dimensional analogy of graph analysis, TDA can model rich interactions beyond pairwise relations. It also distinguishes different dynamics of EEG time series. TDA remains largely unknown to the EEG processing community while it fits well the heterogeneous nature of EEG signals. This short review aims to give a quick introduction to TDA and how it can be applied to EEG analysis in various applications including brain-computer interfaces (BCIs). After introducing the objective of the article, the main concepts and ideas of TDA are explained. Next, how to implement it for EEG processing is detailed, and lastly the article discusses the benefits and limitations of the method.
RESUMEN
Manned-Unmanned Teaming (MUM-T) can be defined as the teaming of aerial robots (artificial agents) along with a human pilot (natural agent), in which the human agent is not an authoritative controller but rather a cooperative team player. To our knowledge, no study has yet evaluated the impact of MUM-T scenarios on operators' mental workload (MW) using a neuroergonomic approach (i.e., using physiological measures), nor provided a MW estimation through classification applied on those measures. Moreover, the impact of the non-stationarity of the physiological signal is seldom taken into account in classification pipelines, particularly regarding the validation design. Therefore this study was designed with two goals: (i) to characterize and estimate MW in a MUM-T setting based on physiological signals; (ii) to assess the impact of the validation procedure on classification accuracy. In this context, a search and rescue (S&R) scenario was developed in which 14 participants played the role of a pilot cooperating with three UAVs (Unmanned Aerial Vehicles). Missions were designed to induce high and low MW levels, which were evaluated using self-reported, behavioral and physiological measures (i.e., cerebral, cardiac, and oculomotor features). Supervised classification pipelines based on various combinations of these physiological features were benchmarked, and two validation procedures were compared (i.e., a traditional one that does not take time into account vs. an ecological one that does). The main results are: (i) a significant impact of MW on all measures, (ii) a higher intra-subject classification accuracy (75%) reached using ECG features alone or in combination with EEG and ET ones with the Adaboost, Linear Discriminant Analysis or the Support Vector Machine classifiers. However this was only true with the traditional validation. There was a significant drop in classification accuracy using the ecological one. Interestingly, inter-subject classification with ecological validation (59.8%) surpassed both intra-subject with ecological and inter-subject with traditional validation. These results highlight the need for further developments to perform MW monitoring in such operational contexts.
RESUMEN
For many years, manufacturers have focused on improving their productivity. Production scheduling operations are critical for this objective. However, in modern manufacturing systems, the original schedule must be regularly updated as it takes places in a dynamic and uncertain environment. The modern manufacturing environment is therefore very stressful for the managers in charge of the production process because they have to cope with many disruptions and uncertainties. To help them in their decision-making process, several decision support systems (DSSs) have been developed. A recent and enormous challenge is the implementation of DSSs to efficiently manage the aforementioned issues. Nowadays, these DSSs are assumed to reduce the users' stress and workload because they automatically (re)schedule the production by applying algorithms. However, to the best of our knowledge, the reciprocal influence of users' mental state (i.e., cognitive and affective states) and the use of these DSSs have received limited attention in the literature. Particularly, the influence of users' unrelated emotions has received even less attention. However, these influences are of particular interest because they can account for explaining the efficiency of DSSs, especially in modulating DSS feedback processing. As a result, we assumed that investigating the reciprocal influences of DSSs and users' mental states could provide useful avenues of investigation. The intention of this article is then to provide recommendations for future research on scheduling and rescheduling operations by suggesting the investigation of users' mental state and encouraging to conduct such research within the neuroergonomic approach.
RESUMEN
The design of human-robot interactions is a key challenge to optimize operational performance. A promising approach is to consider mixed-initiative interactions in which the tasks and authority of each human and artificial agents are dynamically defined according to their current abilities. An important issue for the implementation of mixed-initiative systems is to monitor human performance to dynamically drive task allocation between human and artificial agents (i.e., robots). We, therefore, designed an experimental scenario involving missions whereby participants had to cooperate with a robot to fight fires while facing hazards. Two levels of robot automation (manual vs. autonomous) were randomly manipulated to assess their impact on the participants' performance across missions. Cardiac activity, eye-tracking, and participants' actions on the user interface were collected. The participants performed differently to an extent that we could identify high and low score mission groups that also exhibited different behavioral, cardiac and ocular patterns. More specifically, our findings indicated that the higher level of automation could be beneficial to low-scoring participants but detrimental to high-scoring ones, and vice versa. In addition, inter-subject single-trial classification results showed that the studied behavioral and physiological features were relevant to predict mission performance. The highest average balanced accuracy (74%) was reached using the features extracted from all input devices. These results suggest that an adaptive HRI driving system, that would aim at maximizing performance, would be capable of analyzing such physiological and behavior markers online to further change the level of automation when it is relevant for the mission purpose.
Asunto(s)
Conducta/fisiología , Técnicas Biosensibles , Robótica , Interfaz Usuario-Computador , Adulto , Femenino , Humanos , Masculino , Sistemas Hombre-MáquinaRESUMEN
Recent technological progress has allowed the development of low-cost and highly portable brain sensors such as pre-amplified dry-electrodes to measure cognitive activity out of the laboratory. This technology opens promising perspectives to monitor the "brain at work" in complex real-life situations such as while operating aircraft. However, there is a need to benchmark these sensors in real operational conditions. We therefore designed a scenario in which twenty-two pilots equipped with a six-dry-electrode EEG system had to perform one low load and one high load traffic pattern along with a passive auditory oddball. In the low load condition, the participants were monitoring the flight handled by a flight instructor, whereas they were flying the aircraft in the high load condition. At the group level, statistical analyses disclosed higher P300 amplitude for the auditory target (Pz, P4 and Oz electrodes) along with higher alpha band power (Pz electrode), and higher theta band power (Oz electrode) in the low load condition as compared to the high load one. Single trial classification accuracy using both event-related potentials and event-related frequency features at the same time did not exceed chance level to discriminate the two load conditions. However, when considering only the frequency features computed over the continuous signal, classification accuracy reached around 70% on average. This study demonstrates the potential of dry-EEG to monitor cognition in a highly ecological and noisy environment, but also reveals that hardware improvement is still needed before it can be used for everyday flight operations.
RESUMEN
This study aims at examining the precise temporal dynamics of the emotional facial decoding as it unfolds in the brain, according to the emotions displayed. To characterize this processing as it occurs in ecological settings, we focused on unconstrained visual explorations of natural emotional faces (i.e., free eye movements). The General Linear Model (GLM; Smith and Kutas, 2015a,b; Kristensen et al., 2017a) enables such a depiction. It allows deconvolving adjacent overlapping responses of the eye fixation-related potentials (EFRPs) elicited by the subsequent fixations and the event-related potentials (ERPs) elicited at the stimuli onset. Nineteen participants were displayed with spontaneous static facial expressions of emotions (Neutral, Disgust, Surprise, and Happiness) from the DynEmo database (Tcherkassof et al., 2013). Behavioral results on participants' eye movements show that the usual diagnostic features in emotional decoding (eyes for negative facial displays and mouth for positive ones) are consistent with the literature. The impact of emotional category on both the ERPs and the EFRPs elicited by the free exploration of the emotional faces is observed upon the temporal dynamics of the emotional facial expression processing. Regarding the ERP at stimulus onset, there is a significant emotion-dependent modulation of the P2-P3 complex and LPP components' amplitude at the left frontal site for the ERPs computed by averaging. Yet, the GLM reveals the impact of subsequent fixations on the ERPs time-locked on stimulus onset. Results are also in line with the valence hypothesis. The observed differences between the two estimation methods (Average vs. GLM) suggest the predominance of the right hemisphere at the stimulus onset and the implication of the left hemisphere in the processing of the information encoded by subsequent fixations. Concerning the first EFRP, the Lambda response and the P2 component are modulated by the emotion of surprise compared to the neutral emotion, suggesting an impact of high-level factors, in parieto-occipital sites. Moreover, no difference is observed on the second and subsequent EFRP. Taken together, the results stress the significant gain obtained in analyzing the EFRPs using the GLM method and pave the way toward efficient ecological emotional dynamic stimuli analyses.
RESUMEN
Monitoring pilot's mental states is a relevant approach to mitigate human error and enhance human machine interaction. A promising brain imaging technique to perform such a continuous measure of human mental state under ecological settings is Functional Near-InfraRed Spectroscopy (fNIRS). However, to our knowledge no study has yet assessed the potential of fNIRS connectivity metrics as long as passive Brain Computer Interfaces (BCI) are concerned. Therefore, we designed an experimental scenario in a realistic simulator in which 12 pilots had to perform landings under two contrasted levels of engagement (manual vs. automated). The collected data were used to benchmark the performance of classical oxygenation features (i.e., Average, Peak, Variance, Skewness, Kurtosis, Area Under the Curve, and Slope) and connectivity features (i.e., Covariance, Pearson's, and Spearman's Correlation, Spectral Coherence, and Wavelet Coherence) to discriminate these two landing conditions. Classification performance was obtained by using a shrinkage Linear Discriminant Analysis (sLDA) and a stratified cross validation using each feature alone or by combining them. Our findings disclosed that the connectivity features performed significantly better than the classical concentration metrics with a higher accuracy for the wavelet coherence (average: 65.3/59.9 %, min: 45.3/45.0, max: 80.5/74.7 computed for HbO/HbR signals respectively). A maximum classification performance was obtained by combining the area under the curve with the wavelet coherence (average: 66.9/61.6 %, min: 57.3/44.8, max: 80.0/81.3 computed for HbO/HbR signals respectively). In a general manner all connectivity measures allowed an efficient classification when computed over HbO signals. Those promising results provide methodological cues for further implementation of fNIRS-based passive BCIs.
RESUMEN
Mental workload is a mental state that is currently one of the main research focuses in neuroergonomics. It can notably be estimated using measurements in electroencephalography (EEG), a method that allows for direct mental state assessment. Auditory probes can be used to elicit event-related potentials (ERPs) that are modulated by workload. Although, some papers do report ERP modulations due to workload using attended or ignored probes, to our knowledge there is no literature regarding effective workload classification based on ignored auditory probes. In this paper, in order to efficiently estimate workload, we advocate for the use of such ignored auditory probes in a single-stimulus paradigm and a signal processing chain that includes a spatial filtering step. The effectiveness of this approach is demonstrated on data acquired from participants that performed the Multi-Attribute Task Battery - II. They carried out this task during two 10-min blocks. Each block corresponded to a workload condition that was pseudorandomly assigned. The easy condition consisted of two monitoring tasks performed in parallel, and the difficult one consisted of those two tasks with an additional plane driving task. Infrequent auditory probes were presented during the tasks and the participants were asked to ignore them. The EEG data were denoised and the probes' ERPs were extracted and spatially filtered using a canonical correlation analysis. Next, binary classification was performed using a Fisher LDA and a fivefold cross-validation procedure. Our method allowed for a very high estimation performance with a classification accuracy above 80% for every participant, and minimal intrusiveness thanks to the use of a single-stimulus paradigm. Therefore, this study paves the way to the efficient use of ERPs for mental state monitoring in close to real-life settings and contributes toward the development of adaptive user interfaces.
RESUMEN
Mental workload estimation is of crucial interest for user adaptive interfaces and neuroergonomics. Its estimation can be performed using event-related potentials (ERPs) extracted from electroencephalographic recordings (EEG). Several ERP spatial filtering methods have been designed to enhance relevant EEG activity for active brain-computer interfaces. However, to our knowledge, they have not yet been used and compared for mental state monitoring purposes. This paper presents a thorough comparison of three ERP spatial filtering methods: principal component analysis (PCA), canonical correlation analysis (CCA) and the xDAWN algorithm. Those methods are compared in their performance to allow for an accurate classification of mental workload when applied in an otherwise similar processing chain. The data of 20 healthy participants that performed a memory task for 10 minutes each was used for classification. Two levels of mental workload were considered depending on the number of digits participants had to memorize (2/6). The highest performances were obtained using the CCA filtering and the xDAWN algorithm respectively with 98% and 97% of correct classification. Their performances were significantly higher than that obtained using the PCA filtering (88%).
Asunto(s)
Electroencefalografía , Potenciales Evocados/fisiología , Adulto , Algoritmos , Interfaces Cerebro-Computador , Femenino , Humanos , Masculino , Memoria , Análisis de Componente Principal , Carga de TrabajoRESUMEN
Current mental state monitoring systems, a.k.a. passive brain-computer interfaces (pBCI), allow one to perform a real-time assessment of an operator's cognitive state. In EEG-based systems, typical measurements for workload level assessment are band power estimates in several frequency bands. Mental fatigue, arising from growing time-on-task (TOT), can significantly affect the distribution of these band power features. However, the impact of mental fatigue on workload (WKL) assessment has not yet been evaluated. With this paper we intend to help fill in this lack of knowledge by analyzing the influence of WKL and TOT on EEG band power features, as well as their interaction and its impact on classification performance. Twenty participants underwent an experiment that modulated both their WKL (low/high) and time spent on the task (short/long). Statistical analyses were performed on the EEG signals, behavioral and subjective data. They revealed opposite changes in alpha power distribution between WKL and TOT conditions, as well as a decrease in WKL level discriminability with increasing TOT in both number of statistical differences in band power and classification performance. Implications for pBCI systems and experimental protocol design are discussed.
Asunto(s)
Interfaces Cerebro-Computador , Diagnóstico por Imagen/métodos , Memoria , Fatiga Mental/patología , Fatiga Mental/fisiopatología , Adulto , Diagnóstico por Imagen/instrumentación , Electroencefalografía , Femenino , Humanos , MasculinoRESUMEN
Electrocardiography is used to provide features for mental state monitoring systems. There is a need for quick mental state assessment in some applications such as attentive user interfaces. We analyzed how heart rate and heart rate variability features are influenced by working memory load (WKL) and time-on-task (TOT) on very short time segments (5s) with both statistical significance and classification performance results. It is shown that classification of such mental states can be performed on very short time segments and that heart rate is more predictive of TOT level than heart rate variability. However, both features are efficient for WKL level classification. What's more, interesting interaction effects are uncovered: TOT influences WKL level classification either favorably when based on HR, or adversely when based on HRV. Implications for mental state monitoring are discussed.