Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
BMC Vet Res ; 20(1): 169, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698383

RESUMEN

BACKGROUND: Bovine mastitis is one of the most widespread diseases affecting cattle, leading to significant losses for the dairy industry. Currently, the so-called gold standard in mastitis diagnosis involves determining the somatic cell count (SCC). Apart from a number of advantages, this method has one serious flaw: It does not identify the etiological factor causing a particular infection, making it impossible to introduce targeted antimicrobial therapy. This can contribute to multidrug-resistance in bacterial species. The diagnostic market lacks a test that has the advantages of SCC and also recognizes the species of pathogen causing the inflammation. Therefore, the aim of our study was to develop a lateral flow immunoassay (LFIA) based on elongation factor Tu for identifying most prevalent Gram-positive cocci responsible for causing mastitis including Streptococcus uberis, Streptococcus agalactiae and Staphylococcus aureus. RESULTS: As a result, we showed that the assay for S. uberis detection demonstrated a specificity of 89.02%, a sensitivity of 43.59%, and an accuracy of 80.3%. In turn, the second variant - assay for Gram-positive cocci reached a specificity of 95.59%, a sensitivity of 43.28%, and an accuracy of 78.33%. CONCLUSIONS: Our study shows that EF-Tu is a promising target for LFIA and we have delivered evidence that further evaluation could improve test parameters and fill the gap in the mastitis diagnostics market.


Asunto(s)
Mastitis Bovina , Streptococcus agalactiae , Streptococcus , Mastitis Bovina/diagnóstico , Mastitis Bovina/microbiología , Animales , Bovinos , Femenino , Streptococcus agalactiae/aislamiento & purificación , Streptococcus/aislamiento & purificación , Staphylococcus aureus/aislamiento & purificación , Sensibilidad y Especificidad , Infecciones Estreptocócicas/veterinaria , Infecciones Estreptocócicas/diagnóstico , Infecciones Estreptocócicas/microbiología , Cocos Grampositivos/aislamiento & purificación , Inmunoensayo/veterinaria , Inmunoensayo/métodos , Infecciones Estafilocócicas/veterinaria , Infecciones Estafilocócicas/diagnóstico , Infecciones Estafilocócicas/microbiología , Leche/microbiología , Leche/citología
2.
Int J Infect Dis ; 140: 119-123, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38325748

RESUMEN

Carboxylic organic acids are intermediates of central carbon metabolic pathways (e.g. acetic, propionic, citric, and lactic acid) long known to have potent antimicrobial potential, mainly at acidic pHs. The food industry has been leveraging those properties for years, using many of these acids as preservatives to inhibit the growth of pathogenic and/or spoilage fungal and bacterial species. A few of these molecules (the most prominent being acetic acid) have been used as antiseptics since Hippocratic medicine, mainly to treat infected wounds in patients with burns. With the growth of antibiotic therapy, the use of carboxylic acids (and other chemical antiseptics) in clinical settings lost relevance; however, with the continuous emergence of multi-antibiotic/antifungal resistant strains, the search for alternatives has intensified. This prospective article raises awareness of the potential of carboxylic acids to control infections in clinical settings, considering not only their previous exploitation in this context (which we overview) but also the positive experience of their safe use in food preservation. At a time of great concern with antimicrobial resistance and the slow arrival of new antimicrobial therapeutics to the market, further exploration of organic acids as anti-infective molecules may pave the way to more sustainable prophylactic and therapeutic approaches.


Asunto(s)
Antiinfecciosos , Ácidos Carboxílicos , Humanos , Antiinfecciosos/farmacología , Antiinfecciosos/uso terapéutico , Ácidos Carboxílicos/farmacología , Ácidos Carboxílicos/uso terapéutico , Conservantes de Alimentos/farmacología , Estudios Prospectivos
3.
Sci Rep ; 13(1): 15384, 2023 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-37717040

RESUMEN

Nanohydroxyapatite (nanoHAP) is widely used in bone regeneration, but there is a need to enhance its properties to provide stimuli for cell commitment and osteoconduction. This study examines the effect of calcination at 1200 °C on the physicochemical and biological properties of nanoHAP doped with magnesium (Mg2+), strontium (Sr2+), and zinc (Zn2+). A synergistic effect of dual modification on nanoHAP biological properties was investigated. The materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), BET analysis, Fourier-transform spectroscopy, and thermal analysis methods. Furthermore, ion release tests and in vitro biological characterization, including cytocompatibility, reactive oxygen species production, osteoconductive potential and cell proliferation, were performed. The XRD results indicate that the ion substitution of nanoHAP has no effect on the apatite structure, and after calcination, ß-tricalcium phosphate (ß-TCP) is formed as an additional phase. SEM analysis showed that calcination induces the agglomeration of particles and changes in surface morphology. A decrease in the specific surface area and in the ion release rate was observed. Combining calcination and nanoHAP ion modification is beneficial for cell proliferation and osteoblast response and provide additional stimuli for cell commitment in bone regeneration.


Asunto(s)
Huesos , Ingeniería de Tejidos , Osteoblastos , Apatitas , Regeneración Ósea
4.
Int J Mol Sci ; 24(18)2023 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-37762213

RESUMEN

Helicobacter pylori (H. pylori) infection is the most common cause of chronic gastritis, peptic ulcers and gastric cancer. Successful colonization of the stomach by H. pylori is related to the complex interactions of these bacteria and its components with host cells. The growing antibiotic resistance of H. pylori and various mechanisms of evading the immune response have forced the search for new biologically active substances that exhibit antibacterial properties and limit the harmful effects of these bacteria on gastric epithelial cells and immune cells. In this study, the usefulness of pyomelanin (PyoM) produced by Pseudomonas aeruginosa for inhibiting the metabolic activity of H. pylori was evaluated using the resazurin reduction assay, as well as in vitro cell studies used to verify the cytoprotective, anti-apoptotic and pro-regenerative effects of PyoM in the H. pylori LPS environment. We have shown that both water-soluble (PyoMsol) and water-insoluble (PyoMinsol) PyoM exhibit similar antibacterial properties against selected reference and clinical strains of H. pylori. This study showed that PyoM at a 1 µg/mL concentration reduced H. pylori-driven apoptosis and reactive oxygen species (ROS) production in fibroblasts, monocytes or gastric epithelial cells. In addition, PyoM enhanced the phagocytosis of H. pylori. PyoMsol showed better pro-regenerative and immunomodulatory activities than PyoMinsol.


Asunto(s)
Helicobacter pylori , Pseudomonas aeruginosa , Estómago , Células Epiteliales , Fagocitosis , Antibacterianos/farmacología
5.
J Biomed Mater Res B Appl Biomater ; 111(12): 2077-2088, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37596849

RESUMEN

Bone tissue regeneration is one of the main areas of tissue engineering. A particularly important aspect is the development of new innovative composite materials intended for bone tissue engineering and/or bone substitution. In this article, the synthesis and characterization of ceramic-polymer composites based on polyvinylpyrrolidone, poly(vinyl alcohol) and hydroxyapatite (HAp) have been presented. The first part of the work deals with the synthesis and characterization of the ceramic phase. It was demonstrated that the obtained calcium phosphate is characterized by a heterogeneity and porosity indicating simultaneously its large specific surface area. Additionally, in the wound healing test, it was shown that the obtained powder supports the regeneration of L929 cells. Next, HAp-containing composite materials were obtained in the waste-free photopolymerization process and characterized in detail. It was proved that the obtained composites were characterized by sorption properties and stability during 12-day incubation in simulated physiological liquids. Importantly, the obtained composites showed no cytotoxic effect against the L929 murine fibroblasts - the cell viability was 94.5%. Then, confocal microscopy allowed to observe that murine fibroblasts effectively colonized the surface of the obtained polymer-ceramic composites, covering the entire surface of the biomaterial. Thus, the obtained results confirm the high potential of the obtained composites in the application of bone tissue regenerative medicine.

6.
ACS Biomater Sci Eng ; 9(9): 5222-5254, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37585562

RESUMEN

Novel tissue regeneration strategies are constantly being developed worldwide. Research on bone regeneration is noteworthy, as many promising new approaches have been documented with novel strategies currently under investigation. Innovative biomaterials that allow the coordinated and well-controlled repair of bone fractures and bone loss are being designed to reduce the need for autologous or allogeneic bone grafts eventually. The current engineering technologies permit the construction of synthetic, complex, biomimetic biomaterials with properties nearly as good as those of natural bone with good biocompatibility. To ensure that all these requirements meet, bioactive molecules are coupled to structural scaffolding constituents to form a final product with the desired physical, chemical, and biological properties. Bioactive molecules that have been used to promote bone regeneration include protein growth factors, peptides, amino acids, hormones, lipids, and flavonoids. Various strategies have been adapted to investigate the coupling of bioactive molecules with scaffolding materials to sustain activity and allow controlled release. The current manuscript is a thorough survey of the strategies that have been exploited for the delivery of biomolecules for bone regeneration purposes, from choosing the bioactive molecule to selecting the optimal strategy to synthesize the scaffold and assessing the advantages and disadvantages of various delivery strategies.


Asunto(s)
Materiales Biocompatibles , Ingeniería de Tejidos , Materiales Biocompatibles/uso terapéutico , Regeneración Ósea , Huesos , Péptidos
7.
Int J Mol Sci ; 24(9)2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37175552

RESUMEN

Bacteria are the source of many bioactive compounds, including polymers with various physiological functions and the potential for medical applications. Pyomelanin from Pseudomonas aeruginosa, a nonfermenting Gram-negative bacterium, is a black-brown negatively charged extracellular polymer of homogentisic acid produced during L-tyrosine catabolism. Due to its chemical properties and the presence of active functional groups, pyomelanin is a candidate for the development of new antioxidant, antimicrobial and immunomodulatory formulations. This work aimed to obtain bacterial water-soluble (Pyosol), water-insoluble (Pyoinsol) and synthetic (sPyo) pyomelanin variants and characterize their chemical structure, thermosensitivity and biosafety in vitro and in vivo (Galleria mallonella). FTIR analysis showed that aromatic ring connections in the polymer chains were dominant in Pyosol and sPyo, whereas Pyoinsol had fewer Car-Car links between rings. The differences in chemical structure influence the solubility of various forms of pyomelanins, their thermal stability and biological activity. Pyosol and Pyoinsol showed higher biological safety than sPyo. The obtained results qualify Pyosol and Pyoinsol for evaluation of their antimicrobial, immunomodulatory and proregenerative activities.


Asunto(s)
Melaninas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolismo , Melaninas/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo
8.
Nanomaterials (Basel) ; 13(9)2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37177013

RESUMEN

Bioactive calcium phosphate ceramics (CaPs) are one of the building components of the inorganic part of bones. Synthetic CaPs are frequently used as materials for filling bone defects in the form of pastes or composites; however, their porous structure allows modification with active substances and, thus, subsequent use as a drug carrier for the controlled release of active substances. In this study, four different ceramic powders were compared: commercial hydroxyapatite (HA), TCP, brushite, as well as HA obtained by wet precipitation methods. The ceramic powders were subjected to physicochemical analysis, including FTIR, XRD, and determination of Ca/P molar ratio or porosity. These techniques confirmed that the materials were phase-pure, and the molar ratios of calcium and phosphorus elements were in accordance with the literature. This confirmed the validity of the selected synthesis methods. CaPs were then modified with the antibiotic clindamycin. Drug release was determined on HPLC, and antimicrobial properties were tested against Staphylococcus aureus. The specific surface area of the ceramic has been demonstrated to be a factor in drug release efficiency.

9.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36430791

RESUMEN

Synthetic implants are used to treat large bone defects that are often unable to regenerate, for example those caused by osteoporosis. It is necessary that the materials used to manufacture them are biocompatible and resorbable. Polymer-ceramic composites, such as those based on poly(L-lactide) (PLLA) and calcium phosphate ceramics (Ca-P), are often used for these purposes. In this study, we attempted to investigate an innovative strategy for two-step (dual) modification of composites and their components to improve the compatibility of composite components and the adhesion between PLA and Ca-P whiskers, and to increase the mechanical strength of the composite, as well as improve osteological bioactivity and prevent bone resorption in composites intended for bone regeneration. In the first step, Ca-P whiskers were modified with a saturated fatty acid namely, lauric acid (LA), or a silane coupling agent γ-aminopropyltriethoxysilane (APTES). Then, the composite, characterized by the best mechanical properties, was modified in the second stage of the work with an active chemical compound used in medicine as a first-line drug in osteoporosis-sodium alendronate, belonging to the group of bisphosphonates (BP). As a result of the research covered in this work, the composite modified with APTES and alendronate was found to be a promising candidate for future biomedical engineering applications.


Asunto(s)
Osteoporosis , Silanos , Humanos , Alendronato/farmacología , Porosidad , Poliésteres/química , Osteoblastos
10.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36142380

RESUMEN

Composites based on polylactide (PLA) and hydroxyapatite (HA) were prepared using a thermally induced phase separation method. In the experimental design, the PLA with low weight-average molar mass (Mw) and high Mw were tested with the inclusion of HA synthesized as whiskers or hexagonal rods. In addition, the structure of HA whiskers was doped with Zn, whereas hexagonal rods were mixed with Sr salt. The composites were sterilized and then incubated in phosphate-buffered saline for 12 weeks at 37 °C, followed by characterization of pore size distribution, molecular properties, density and mechanical strength. Results showed a substantial reduction of PLA Mw for both polymers due to the preparation of composites, their sterilization and incubation. The distribution of pore size effectively increased after the degradation process, whereas the sterilization, furthermore, had an impact on pore size distribution depending on HA added. The inclusion of HA reduced to some extent the degradation of PLA quantitatively in the weight loss in vitro compared to the control without HA. All produced materials showed no cytotoxicity when validated against L929 mouse skin fibroblasts and hFOB 1.19 human osteoblasts. The lack of cytotoxicity was accompanied by the immunocompatibility with human monocytic cells that were able to detect pyrogenic contaminants.


Asunto(s)
Durapatita , Poliésteres , Animales , Materiales Biocompatibles/química , Fuerza Compresiva , Durapatita/química , Humanos , Ensayo de Materiales , Ratones , Poliésteres/química , Polímeros/química , Esterilización
11.
Int J Mol Sci ; 23(5)2022 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-35269991

RESUMEN

Tubular polymeric structures have been recognized in the treatment of peripheral nerves as comparable to autologous grafting. The best therapeutic outcomes are obtained with conduits releasing therapeutic molecules. In this study, a new approach for the incorporation of biologically active agent-loaded microspheres into the structure of chitosan/polycaprolactone conduits was developed. The support of a polycaprolactone helix formed by 3D melt extrusion was coated with dopamine in order to adsorb nerve growth factor-loaded microspheres. The complex analysis of the influence of process factors on the coverage efficiency of polycaprolactone helix by nerve grow factor-loaded microspheres was analyzed. Thus, the PCL helix characterized with the highest adsorption of microspheres was subjected to nerve growth factor release studies, and finally incorporated into chitosan hydrogel deposit through the process of electrophoretic deposition. It was demonstrated by chemical and physical tests that the chitosan/polycaprolactone conduit meets the requirements imposed on peripheral nerve implants, particularly mimicking mechanical properties of surrounding soft tissue. Moreover, the conduit may support regrowing nerves for a prolonged period, as its structure and integrity persist upon incubation in lysozyme-contained PBS solution up to 28 days at body temperature. In vitro cytocompatibility toward mHippoE-18 embryonic hippocampal cells of the chitosan/polycaprolactone conduit was proven. Most importantly, the developed conduits stimulate axonal growth and support monocyte activation, the latter is advantageous especially at early stages of nerve regeneration. It was demonstrated that, through the described approach for controlling spatiotemporal release of nerve growth factors, these biocompatible structures adjusted to the specific peripheral nerve injury case can be manufactured.


Asunto(s)
Quitosano , Quitosano/química , Quitosano/farmacología , Factor de Crecimiento Nervioso/farmacología , Regeneración Nerviosa/fisiología , Nervios Periféricos/fisiología , Poliésteres , Nervio Ciático/fisiología
12.
Int J Mol Sci ; 22(24)2021 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-34948389

RESUMEN

In this research, we describe the properties of three-component composite foam scaffolds based on poly(ε-caprolactone) (PCL) as a matrix and hydroxyapatite whiskers (HAP) and L-Lysine as fillers (PCL/HAP/Lys with wt% ratio 50/48/2). The scaffolds were prepared using a thermally induced phase separation technique supported by salt leaching (TIPS-SL). All materials were precisely characterized: porosity, density, water uptake, wettability, DSC, and TGA measurements and compression tests were carried out. The microstructure of the obtained scaffolds was analyzed via SEM. It was found that the PCL/HAP/Lys scaffold has a 45% higher Young's modulus and better wettability compared to the PCL/HAP system. At the same time, the porosity of the system was ~90%. The osteoblast hFOB 1.19 cell response was also investigated in osteogenic conditions (39 °C) and the cytokine release profile of interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α was determined. Modification of PCL scaffolds with HAP and L-Lysine significantly improved the proliferation of pre-osteoblasts cultured on such materials.


Asunto(s)
Materiales Biocompatibles/química , Durapatita/química , Lisina/análogos & derivados , Osteoblastos/citología , Poliésteres/química , Andamios del Tejido/química , Regeneración Ósea , Adhesión Celular , Línea Celular , Proliferación Celular , Humanos , Ingeniería de Tejidos/métodos
13.
Materials (Basel) ; 14(20)2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34683591

RESUMEN

In the present work, hydroxyapatite-polymer materials were developed. The preparation, as well as characterization of the ceramic-polymer composites based on polyvinylpyrrolidone, sodium alginate, and gelatin were described. The system was enriched with the addition of common sage extract (Salvia officinalis). The antioxidant potential of sage aqueous extract and total polyphenol content was determined. The antioxidant capacity and total phenolic content of extract were equal to 86.06 ± 0.49% and 16.21 ± 0.58 mg gallic acid equivalents per gram of dry weight, respectively. Incubation studies in selected biological liquids were carried out to determine the biomineralization capacity on the surface of the composites and to examine the kinetics of release of the active substances from within the material. As a result of the incubation, a gradual release of the extract over time from the polymer matrix was observed; moreover, the appearance of new apatite layers on the composite surface was recorded as early as after 14 days, which was also confirmed by energy-dispersive X-ray spectroscopy (EDS) microanalysis. The composites were analyzed with Fourier transform infrared spectroscopy (FTIR) spectroscopy, and the morphology was recorded by scanning electron microscope (SEM) imaging. The in vitro biological studies allowed their cytotoxic effect on the reference L929 fibroblasts to be excluded. Further analysis of the biomaterials showed that enrichment with polyphenols does not support the adhesion of L929 cells to the surface of the material. However, the addition of these natural components stimulates human monocytes that constitute the first step of tissue regeneration.

14.
Materials (Basel) ; 14(17)2021 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-34501114

RESUMEN

This paper describes the plant-mediated preparation of silver nanoparticles with aqueous extract and infusion of Cistus incanus leaves. To evaluate aqueous extract and infusion antioxidant capacity and total phenolic content the DPPH and Folin-Ciocalteau methods were utilized. The antioxidant capacity and total phenolic content of extract and infusion were equal to 85.97 ± 6.54 mg gallic acid equivalents per gram of dry weight.; 10.76 ± 0.59 mg/mL and 12.65 ± 1.04 mg gallic acid equivalents per gram of dry weight.; 3.10 ± 0.14 mg/mL, respectively. The formed nanoparticles displayed the characteristic absorption band in the 380-450 nm wavelength range. The average size of particles was in the 68.8-71.2 nm range. Morphology and phase composition analysis revealed the formation of spherical nanoparticles with a face-centred cubic structure. Immune compatibility tests of nanoparticles and plant extracts showed no activation of the THP1-XBlue™ monocyte. Cytotoxicity tests performed with L929 mice fibroblasts showed that nanoparticles should be utilized at a concentration of 16 ppm. The minimum inhibitory concentrations determined with the microdilution method for nanoparticles prepared with plant infusion for S. aureus and S. epidermidis were 2 ppm and 16 ppm, respectively.

15.
Int J Mol Sci ; 22(16)2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34445293

RESUMEN

In this research, we synthesize and characterize poly(glycerol sebacate) pre-polymer (pPGS) (1H NMR, FTiR, GPC, and TGA). Nano-hydroxyapatite (HAp) is synthesized using the wet precipitation method. Next, the materials are used to prepare a PGS-based composite with a 25 wt.% addition of HAp. Microporous composites are formed by means of thermally induced phase separation (TIPS) followed by thermal cross-linking (TCL) and salt leaching (SL). The manufactured microporous materials (PGS and PGS/HAp) are then subjected to imaging by means of SEM and µCT for the porous structure characterization. DSC, TGA, and water contact angle measurements are used for further evaluation of the materials. To assess the cytocompatibility and biological potential of PGS-based composites, preosteoblasts and differentiated hFOB 1.19 osteoblasts are employed as in vitro models. Apart from the cytocompatibility, the scaffolds supported cell adhesion and were readily populated by the hFOB1.19 preosteoblasts. HAp-facilitated scaffolds displayed osteoconductive properties, supporting the terminal differentiation of osteoblasts as indicated by the production of alkaline phosphatase, osteocalcin and osteopontin. Notably, the PGS/HAp scaffolds induced the production of significant amounts of osteoclastogenic cytokines: IL-1ß, IL-6 and TNF-α, which induced scaffold remodeling and promoted the reconstruction of bone tissue. Initial biocompatibility tests showed no signs of adverse effects of PGS-based scaffolds toward adult BALB/c mice.


Asunto(s)
Sustitutos de Huesos/síntesis química , Decanoatos/química , Durapatita/química , Glicerol/análogos & derivados , Polímeros/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Regeneración Ósea/efectos de los fármacos , Sustitutos de Huesos/química , Sustitutos de Huesos/farmacología , Sustitutos de Huesos/uso terapéutico , Huesos/efectos de los fármacos , Huesos/fisiología , Células Cultivadas , Femenino , Glicerol/química , Humanos , Invenciones , Masculino , Ensayo de Materiales , Ratones , Ratones Endogámicos BALB C , Osteoblastos/efectos de los fármacos , Osteoblastos/fisiología , Osteogénesis/efectos de los fármacos , Polímeros/síntesis química , Porosidad , Ingeniería de Tejidos/tendencias
16.
Materials (Basel) ; 14(9)2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33947013

RESUMEN

Hydroxyapatite (HAp) is a bioactive ceramic with great potential for the regeneration of the skeletal system. However, its mechanical properties, especially its brittleness, limit its application. Therefore, in order to increase its ability to transmit stresses, it can be combined with a polymer phase, which increases its strength without eliminating the important aspect of bioactivity. The presented work focuses on obtaining organic-inorganic hydrogel materials based on whey protein isolate (WPI) reinforced with nano-HAp powder. The proportion of the ceramic phase was in the range of 0-15%. Firstly, a physicochemical analysis of the materials was performed using XRD, FT-IR and SEM. The hydrogel composites were subjected to swelling capacity measurements, potentiometric and conductivity analysis, and in vitro tests in four liquids: distilled water, Ringer's fluid, artificial saliva, and simulated body fluid (SBF). The incubation results demonstrated the successful formation of new layers of apatite as a result of the interaction with the fluids. Additionally, the influence of the materials on the metabolic activity according to ISO 10993-5:2009 was evaluated by identifying direct contact cytotoxicity towards L-929 mouse fibroblasts, which served as a reference. Moreover, the stimulation of monocytes by hydrogels via the induction of nuclear factor (NF)-κB was investigated. The WPI/HAp composite hydrogels presented in this study therefore show great potential for use as novel bone substitutes.

17.
J Anim Ecol ; 90(10): 2325-2335, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34028816

RESUMEN

Optimal size of social groups may vary between individuals, depending on their phenotypic traits, such as dominance status, age or personality. Larger social groups often enhance transmission rates of pathogens and should be avoided by individuals with poor immune defences. In contrast, more immunocompetent individuals are expected to take advantage of larger group sizes (e.g. better protection, information transfer) with smaller extra costs from pathogen or parasite pressure. Here, we hypothesized that immunocompetence may be a key determinant of group size choice and tested this hypothesis in a colonial waterbird, the common tern Sterna hirundo. We used a unique experimental framework, where formation of breeding colonies of different sizes was induced under uniform environmental conditions. For this purpose, different-size patches of attractive nesting substrate (artificial floating rafts) were provided at a single site with limited availability of natural nesting habitat. Colony size was identified as the only significant predictor of both innate (natural antibody-mediated complement activation) and adaptive (immunoglobulin concentrations) immunological traits in the common terns, as more immunocompetent birds settled in larger experimental colonies. In contrast, we found no significant associations between colony size and genetic diversity of key pathogen-recognition receptors, toll-like receptors (TLRs) and the Major Histocompatibility Complex (MHC) or genome-wide heterozygosity. We conclude that settlement decisions may be flexible within individuals and, thus, are likely to be primarily determined by the current immunological status, rather than fixed immunogenetic traits. Our study sheds new light on the complex interface between immunity and sociality in animals.


Asunto(s)
Aves , Charadriiformes , Animales , Ecosistema , Conducta Social
18.
Int J Mol Sci ; 22(7)2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33808501

RESUMEN

In this research, we prepared foam scaffolds based on poly(l-lactide) (PLLA) and apatite whiskers (HAP) using thermally induced phase separation technique supported by the salt leaching process (TIPS-SL). Using sodium chloride having a size of (a) 150-315 µm, (b) 315-400 µm, and (c) 500-600 µm, three types of foams with different pore sizes have been obtained. Internal structure of the obtained materials has been investigated using SEM as well as µCT. The materials have been studied by means of porosity, density, and compression tests. As the most promising, the composite prepared with salt size of 500-600 µm was prepared also with the l-lysine modified apatite. The osteoblast hFOB 1.19 cell response for the scaffolds was also investigated by means of cell viability, proliferation, adhesion/penetration, and biomineralization. Direct contact cytotoxicity assay showed the cytocompatibility of the scaffolds. All types of foam scaffolds containing HAP whiskers, regardless the pore size or l-lysine modification induced significant stimulatory effect on the cal-cium deposits formation in osteoblasts. The PLLA/HAP scaffolds modified with l-lysine stimulated hFOB 1.19 osteoblasts proliferation. Compared to the scaffolds with smaller pores (150-315 µm and 315-400 µm), the PLLA/HAP foams with large pores (500-600 µm) promoted more effective ad-hesion of osteoblasts to the surface of the biomaterial.


Asunto(s)
Durapatita/química , Poliésteres/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Apatitas/química , Apatitas/metabolismo , Materiales Biocompatibles/química , Línea Celular Tumoral , Humanos , Ácido Láctico/metabolismo , Lisina/química , Lisina/metabolismo , Osteoblastos/metabolismo , Poliésteres/metabolismo , Polímeros/química , Porosidad
19.
J Tissue Eng Regen Med ; 15(5): 463-474, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33735542

RESUMEN

Epigenetic processes, such as DNA methylation and other chromatin modifications, are believed to be largely responsible for establishing a reduced capacity for growth in the mature nervous system. Ten-eleven translocation methylcytosine dioxygenase 3 (Tet3)-, a member of the Tet gene family, plays a crucial role in promoting injury-induced DNA demethylation and expression of regeneration-associated genes in the peripheral nervous system. Here, we encapsulate Tet3 protein within a clinically tolerated poly(lactide-co-glycolide) microsphere system. Next, we show that Tet3-loaded microspheres are internalized into mHippoE-18 embryonic hippocampal cells. We compare the outgrowth potential of Tet3 microspheres with that of commonly used nerve growth factor (NGF)-loaded microspheres in an in vitro injury model. Tet3-containing microspheres increased levels of nuclear 5-hydroxymethylcytosine indicating active demethylation and outperformed NGF-containing microspheres in measures of neurite outgrowth. Our results suggest that encapsulated demethylases may represent a novel avenue to treat nerve injuries.


Asunto(s)
Desmetilación del ADN , Dioxigenasas/metabolismo , Microesferas , Proyección Neuronal , Neuronas/metabolismo , Animales , Línea Celular , Metilación de ADN , Ratones , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química
20.
J Hazard Mater ; 407: 124632, 2021 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-33359974

RESUMEN

The contamination of the environment with anticancer drugs, which show recalcitrance to conventional wastewater treatment, has become a significant ecological threat. Fungi represent a promising non-conventional biological alternative for water conditioning. The aim of this work was to evaluate the efficacy of five white-rot fungi (Fomes fomentarius (CB13), Hypholoma fasciculare (CB15), Phyllotopsis nidulans (CB14), Pleurotus ostreatus (BWPH) and Trametes versicolor (CB8)) in the removal of bleomycin and vincristine. The removal capacity was measured at 0, 4, 9, and 14 days of incubation using SPE-UPLC-MS. The enzymatic profiles of laccase, manganese, and lignin peroxidases and wide range of eco- and cytotoxicity, assays of the post-process samples were also conducted. We observed >94% vincristine elimination by F. fomentarius, H. fasciculare and T. versicolor after only 4 days. Bleomycin removal occurred after a minimum of 9 days and only when the drug was incubated with T. versicolor (36%) and H. fasciculare (25%). The removal of both cytostatics was associated with laccase production, and the loss of eco- and cytotoxicity, especially in regard to viability of Lemna minor and Daphnia magna, as well as fibroblasts morphology.


Asunto(s)
Citostáticos , Trametes , Agaricales , Animales , Biodegradación Ambiental , Bleomicina , Cromatografía Liquida , Coriolaceae , Lacasa , Polyporaceae , Espectrometría de Masas en Tándem , Vincristina/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA