RESUMEN
This study investigated the effects of 1,4-naphthoquinone (NQ) and naphthazarin (5,8-dihydroxy-1,4-naphthoquinone, DHNQ) individually and in combination, applied at low concentrations (0.1, 1, and 10 nM), on growth, hydrogen peroxide (H2O2) production, catalase activity, and lipid peroxidation in maize seedlings. It was found that NQ at 0.1 and 1 nM and DHNQ at 0.1 nM significantly stimulated the fresh weight of the aboveground parts of the seedlings (APS), while the fresh weight of the underground parts of the seedlings (UPS) was enhanced only at 0.1 nM NQ. Interestingly, DHNQ at higher concentrations (1 and 10 nM) significantly diminished the fresh weight of the APS and UPS. When NQ and DHNQ were applied together, an increase in the fresh weight of the APS at all of the concentrations studied was observed. It was also found that NQ and DHNQ individually and in combination, at all concentrations studied, decreased the H2O2 production in the aboveground and underground parts of maize seedlings. The presence of the DHNQ at higher concentrations (1 and 10 nM) triggered an increase in the catalase (CAT) activity of the UPS and APS compared to the control. However, NQ added at 1 nM decreased the CAT activity of both the UPS and APS, while 10 nM increased the CAT activity of UPS. NQ and DHNQ applied together at 0.1 and 10 nM almost completely inhibited catalase activity in the UPS and APS. The data that were obtained for lipid peroxidation, measured as the malondialdehyde (MDA) concentration, indicated that NQ and DHNQ at all concentrations studied decreased the MDA content of the UPS, while both naphthoquinones increased it in APS. The data presented here are discussed taking into account the mechanisms via which naphthoquinones interact with biological systems.
RESUMEN
Plants have co-evolved with diverse microorganisms that have developed different mechanisms of direct and indirect interactions with their host. Recently, greater attention has been paid to a direct "message" delivery pathway from bacteria to plants, mediated by the outer membrane vesicles (OMVs). OMVs produced by Gram-negative bacteria play significant roles in multiple interactions with other bacteria within the same community, the environment, and colonized hosts. The combined forces of innovative technologies and experience in the area of plant-bacterial interactions have put pressure on a detailed examination of the OMVs composition, the routes of their delivery to plant cells, and their significance in pathogenesis, protection, and plant growth promotion. This review synthesizes the available knowledge on OMVs in the context of possible mechanisms of interactions between OMVs, bacteria, and plant cells. OMVs are considered to be potential stimulators of the plant immune system, holding potential for application in plant bioprotection.
RESUMEN
Among numerous contaminants, the ubiquitous occurrence of nonsteroidal anti-inflammatory drugs (NSAIDs) in the environment and their plausible harmful impact on nontarget organisms have made them one of the most important areas of concern in recent years. Crop plants can also potentially be exposed to NSAIDs, since the concentration of these pharmaceuticals is constantly rising in the surface water and soil. Our goal was to evaluate the stress response of two crop plants, maize and tomato, to treatment with selected NSAIDs, naproxen and diclofenac. The focus of the research was on the growth response, photosynthetic efficiency, selected oxidative stress factors (such as the H2O2 level and the rate of lipid peroxidation) as well as the total phenolic content, which represents the non-enzymatic protectants against oxidative stress. The results indicate that susceptibility to the NSAIDs that were tested is dependent on the plant species. A higher sensitivity of tomato manifested in growth inhibition, a decrease in the content of the photosynthetic pigments and a reduction in the maximum quantum efficiency of PSII and the activity of PSII, which was estimated using the Fv/Fm and Fv/F0 ratios. Based on the growth results, it was also possible to reveal that diclofenac had a more toxic effect on tomato. In contrast to tomato, in maize, neither the content of the photosynthetic pigments nor growth appeared to be affected by DFC and NPX. However, both drugs significantly decreased in maize Fv and Fm, which are particularly sensitive to stress. A higher H2O2 concentration accompanied, in most cases, increasing lipid peroxidation, indicating that oxidative stress occurred in response to the selected NSAIDs in the plant species that were studied. The higher phenolic content of the plants after NSAIDs treatment may, in turn, indicate the activation of defense mechanisms in response to the oxidative stress that is triggered by these drugs.
Asunto(s)
Diclofenaco/farmacología , Peroxidación de Lípido/efectos de los fármacos , Naproxeno/farmacología , Estrés Oxidativo/efectos de los fármacos , Solanum lycopersicum/efectos de los fármacos , Zea mays/efectos de los fármacos , Antiinflamatorios no Esteroideos/farmacología , Peróxido de Hidrógeno/farmacología , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Oxidantes/farmacología , Fenoles/farmacología , Zea mays/crecimiento & desarrollo , Zea mays/metabolismoRESUMEN
Dust accumulation on the front cover of solar panels is closely linked to location and orientation of photovoltaic (PV) installation. Its build-up depends on the module tilt angle, frequency of precipitation, humidity, wind strength and velocity, as well as grain size. Additionally, soil composition is determined by solar farm surroundings such as local factories, agricultural crops, and traffic. Over time, molecules of atmospheric dust agglomerate on top of each other and cause gradual reduction in generated energy. Manual cleaning techniques are required to restore working conditions of PV installation to their original conditions; however, they are time consuming and may lead to damage of the glass coverage. Therefore, implementing a different approach by utilizing self-cleaning and anti-dust coatings on front covers of module surfaces is thought of as a competitive manner of cleansing. Based on the varying properties of such thin-films, a division was made into hydrophobic, hydrophilic, and anti-dust coatings. In this article, the authors would like to present a comprehensive review of those types of transparent films. Moreover, a few hydrophobic coatings available on the Polish market were analyzed by applying them on glass tiles and covering them with three types of dust.
RESUMEN
Arabidopsis arenosa is a pseudo-metallophyte, closely related to the model hyperaccumulator of Cd and Zn Arabidopsis halleri. A. arenosa occurs naturally in both diploid (2C) and tetraploid (4C) form, in contrast to A. halleri in which only diploid forms were found. Moreover, A. arenosa similarly to A. halleri often occupies heavy metal (HM) contaminated sites. Nevertheless, knowledge about the ecophysiology of this species is very limited. Therefore, we examined fourteen populations of A. arenosa of different ploidy from Central Europe in situ, focusing on photosynthetic efficiency, pigment content and ability to accumulate selected elements. The presented results indicate that several tetraploid populations exhibit the features of Cd and Zn hyperaccumulation. On the one hand, we noted differences in physiological parameters between the studied populations, on the other, harshness of the environment caused similar physiological response such as high HM pollution. All these features suggest that A. arenosa, especially as a new hyperaccumulator of Cd and Zn and autopolyploidyzation model, may be considered a very interesting research object, particularly when investigating the mechanisms of HMs accumulation and tolerance in plants.
Asunto(s)
Arabidopsis , Metales Pesados , Arabidopsis/genética , Cadmio/toxicidad , Fotosíntesis , Zinc/toxicidadRESUMEN
Silver birch trees (Betula pendula Roth) are a pioneering species in post-industrial habitats, and have been associated with an expansive breeding strategy and low habitat requirements. We conducted ecophysiological and dendroclimatological studies to check whether there are any features of which the modification enables birch trees to colonise extreme habitats successfully. We characterised the efficiency of the photosynthetic apparatus, the gas exchange, the content of pigments in leaves, and the growth (leaf thickness and tree-ring width) of birch trees on a post-coal mine heap, a post-smelter heap, and a reference site. Birch growth was limited mainly by temperature and water availability during summer, and the leaves of the birch growing on post-industrial heaps were significantly thicker than the reference leaves. Moreover, birch trees growing on heaps were characterised by a significantly higher content of flavonols and anthocyanins in leaves and higher non-photochemical quenching. In addition, birches growing on the post-coal mine heap accumulated a concentration of Mn in their leaves, which is highly toxic for most plant species. Increasing the thickness of leaves, and the content of flavonols and anthocyanins, as well as efficient non-photochemical quenching seem to be important features that improve the colonization of extreme habitats by birches.
Asunto(s)
Betula/crecimiento & desarrollo , Betula/fisiología , Sequías , Residuos Industriales , Metales Pesados/toxicidad , Fotosíntesis/efectos de los fármacos , Árboles/crecimiento & desarrollo , Betula/efectos de los fármacos , Clorofila/metabolismo , Clima , Elementos Químicos , Fluorescencia , Gases/metabolismo , Geografía , Modelos Biológicos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Polonia , Análisis de Componente Principal , Árboles/efectos de los fármacosRESUMEN
Plants are masterpieces of evolution that is based on carbon chemistry. In particular, plant leaves are biosynthetic factories able to convert CO2 into carbohydrates and oxygen. It is worth noting that mimicking the efficiency of a natural plant and natural leaf is still a challenge for contemporary chemistry. We can even better realize this when we notice that a plant and an industrial factory are equivalent in meaning. On the other hand, green technologies are under development in a quest for the artificial leaf. If we could modify the synthetic pathways in leaves, we could also design green chemistry schemes in natural leaves to produce useful chemicals or to digest wastes or toxins. Specifically, can we intensify the potential for capturing atmospheric CO2 in leaves? Auxins are plant hormones that control the growth and development of plants. Herein, we determined whether we could efficiently transport xenobiotic auxin into leaves and if so, whether this supply could enhance the metabolism and CO2 capturing ability. By exploring a series of dioxolanes as potential enhancers of auxin transport, we discovered for the first time that a small molecular compound, 2,2-dimethyl-1,3-dioxolane (DMD), enhances the xenobiotic auxin transport to leaves, which boosts the metabolism that is measured by H2O2 production as well as CO2 capturing ability in leaves.
Asunto(s)
Dióxido de Carbono , Ácidos Indolacéticos , Transporte Biológico , Peróxido de Hidrógeno , Fotosíntesis , Hojas de la PlantaRESUMEN
Naphthoquinones, plants secondary metabolites are known for their antibacterial, antifungal, anti-inflammatory, anti-cancer and anti-parasitic properties. The biological activity of naphthoquinones is connected with their ability to generate reactive oxygen species and to modify biological molecules at their nucleophilic sites. In our research, the effect of naphthazarin (DHNQ) combined with 2-hydroxy-1,4-naphthoquinone (NQ-2-OH) or 1,4-naphthoquinone (1,4-NQ) on the elongation growth, pH changes of the incubation medium, oxidative stress and redox activity of maize coleoptile cells were investigated. This paper describes experiments performed with maize (Zea mays L.) coleoptile segments, which is a classical model system to study plant cell elongation growth. The data presented clearly demonstrate that lawsone and 1,4-naphthoquinone combined with naphthazarin, at low concentrations (1 and 10 nM), reduced the endogenous and IAA-induced (Indole-3-Acetic Acid) elongation growth of maize coleoptile segments. Those changes in growth correlated with the proton concentration in the incubation medium, which suggests that the changes in the growth of maize coleoptile segments observed in the presence of naphthoquinones are mediated through the activity of PM Hâº-ATPase. The presence of naphthoquinones induced oxidative stress in the maize coleoptile tissue by producing hydrogen peroxide and causing changes in the redox activity. Moreover, the incubation of maize segments with both naphthoquinones combined with naphthazarin resulted in lipid peroxidation and membrane damage. The regulation of PM Hâº-ATPase activity, especially its inhibition, may result from two major types of reaction: first, a direct interaction between an enzyme and naphthoquinone, which leads to the covalent modification of the protein thiols and the generation of thioethers, which have been found to alter the activity of the PM Hâº-ATPases; second, naphthoquinones induce reactive oxygen species (ROS) production, which inhibits PM Hâº-ATPases by increasing cytosolic Ca2+. This harmful effect was stronger when naphthazarin and 1,4-naphthoquinone were added together. Taking these results into account, it can be suggested that by combining naphthoquinones in small quantities, an alternative to synthetic pesticides could be developed.
Asunto(s)
Cotiledón/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Naftoquinonas/metabolismo , Zea mays/crecimiento & desarrollo , Cotiledón/efectos de los fármacos , Cotiledón/metabolismo , Estrés Oxidativo/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/metabolismo , Zea mays/efectos de los fármacos , Zea mays/metabolismoRESUMEN
AIM: Probiotic bacteria administered directly after birth to preterm neonates may improve gastrointestinal function and may reduce the incidence of late-onset sepsis, which is a frequent complication in this group. PURPOSE: The main objective of this study was to evaluate whether a new probiotic bacterial mixture of Lactobacillus rhamnosus KL53A and Bifidobacterium breve PB04 given to preterm, low-birth-weight neonates would influence composition of their gut microbiota and sepsis rates. PATIENTS AND METHODS: This study was a multicenter, randomized, double-blind, placebo-controlled trial conducted in clinical centers of neonatal care in Poland. A probiotic or placebo preparation was given twice daily to 181 preterm low-birth-weight neonates who were eligible for enteral feeding between July 2012 and July 2013. The probiotic was given to 90 neonates, while placebo was given to 91 neonates. The gut microbiota was monitored by microbiological analysis of stool samples. Sepsis episodes were detected on the basis of clinical and laboratory findings and confirmed by blood cultures. RESULTS: Tested probiotic administration resulted in continuous increase of the Lactobacillus and Bifidobacterium counts in the gut microbiota. The applied tested strains successfully colonized the neonates gut since they were present in over 90% of stool samples, which was confirmed by molecular analysis. Regardless of the study group (probiotic or placebo), B. breve colonization correlated with lower staphylococcal sepsis incidence, which was irrespective of whether probiotics were given. No sepsis case caused by strains included in study probiotic was recorded. CONCLUSION: Appropriately selected and characterized probiotic bacteria may be safely given to preterm neonates to normalize their distorted gut microbiota and may contribute to lower staphylococcal sepsis rates.
RESUMEN
Naphthazarin (5,8-dihydroxy-1,4-naphthoquinone, DHNQ) is a naturally occurring 1,4-naphthoquinone derivative. In this study, we focused on elucidating the toxic effect of this secondary metabolite on the growth of plant cells. The dose-response curves that were obtained for the effects of DHNQ on endogenous and IAA-induced growth in maize coleoptile segments differ in shape; in the first case, it is linear, while in the presence of auxin it is bell-shaped with the maximum at 1 µM. It was found that DHNQ at almost all concentrations studied, when added to the incubation medium inhibited endogenous growth (excluding naphthazarin at 0.001 µM) as well as growth in the presence of IAA. Simultaneous measurements of the growth and external medium pH of coleoptile segments indicated that DHNQ diminished or eliminated proton extrusion at all of the concentrations that were used. Interestingly, the oxidative stress in maize coleoptile cells, which was measured as hydrogen peroxide (H2O2) production, catalase activity, redox activity and malondialdehyde (MDA) content, increased at the lower concentrations of DHNQ (<1 µM), thus suggesting a specific character of its action. It was also found that naphthazarin at concentration higher than 0.1 µM caused the depolarization of the membrane potential (E m). An analysis of the organization and anisotropy of the cortical microtubules showed that naphthazarin at all of the concentrations that were studied changed the IAA-induced transverse microtubule reorientation to an oblique reorientation. Our results indicate that naphthazarin diminished the growth of maize coleoptile cells by a broad spectrum of its toxic effects, thereby suggesting that naphthazarin might be a hypothetical component of new bioherbicides and biopesticides.