Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
IUCrJ ; 11(Pt 1): 120-128, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38133556

RESUMEN

The application of grazing-incidence total X-ray scattering (GITXS) for pair distribution function (PDF) analysis using >50 keV X-rays from synchrotron light sources has created new opportunities for structural characterization of supported thin films with high resolution. Compared with grazing-incidence wide-angle X-ray scattering, which is only useful for highly ordered materials, GITXS/PDFs expand such analysis to largely disordered or nanostructured materials by examining the atomic pair correlations dependent on the direction relative to the surface of the supporting substrate. A characterization of nanocrystalline In2O3-derived thin films is presented here with in-plane-isotropic and out-of-plane-anisotropic orientational ordering of the atomic structure, each synthesized using different techniques. The atomic orientations of such films are known to vary based on the synthetic conditions. Here, an azimuthal orientational analysis of these films using GITXS with a single incident angle is shown to resolve the markedly different orientations of the atomic structures with respect to the planar support and the different degrees of long-range order, and hence, the terminal surface chemistries. It is anticipated that orientational analysis of GITXS/PDF data will offer opportunities to extend structural analyses of thin films by providing a means to qualitatively determine the major atomic orientation within nanocrystalline and, eventually, non-crystalline films.

2.
J Synchrotron Radiat ; 30(Pt 4): 855, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37233736

RESUMEN

The name of an author in the article by Weng et al. (2023) [J. Synchrotron Rad. 30, 546-554] is corrected.

3.
J Synchrotron Radiat ; 30(Pt 3): 546-554, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36897395

RESUMEN

Flat-field calibration of X-ray area detectors is a challenge due to the inability to generate an X-ray flat-field at the selected photon energy the beamline operates at, which has a strong influence on the measurement behavior of the detector. A method is presented in which a simulated flat-field correction is calculated without flat-field measurements. Instead, a series of quick scattering measurements from an amorphous scatterer is used to calculate a flat-field response. The ability to rapidly obtain a flat-field response allows for recalibration of an X-ray detector as needed without significant expenditure of either time or effort. Area detectors on the beamlines used, such as the Pilatus 2M CdTe, PE XRD1621 and Varex XRD 4343CT, were found to have detector responses that drift slightly over timescales of several weeks or after exposure to high photon flux, suggesting the need to more frequently recalibrate with a new flat-field correction map.

4.
Chemistry ; 29(31): e202203551, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-36646645

RESUMEN

We communicate a feasibility study for high-resolution structural characterization of biomacromolecules in aqueous solution from X-ray scattering experiments measured over a range of scattering vectors (q) that is approximately two orders of magnitude wider than used previously for such systems. Scattering data with such an extended q-range enables the recovery of the underlying real-space atomic pair distribution function, which facilitates structure determination. We demonstrate the potential of this method for biomacromolecules using several types of cyclodextrins (CD) as model systems. We successfully identified deviations of the tilting angles for the glycosidic units in CDs in aqueous solutions relative to their values in the crystalline forms of these molecules. Such level of structural detail is inaccessible from standard small angle scattering measurements. Our results call for further exploration of ultra-wide-angle X-ray scattering measurements for biomacromolecules.

5.
J Synchrotron Radiat ; 30(Pt 1): 137-146, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36601933

RESUMEN

In situ synchrotron high-energy X-ray powder diffraction (XRD) is highly utilized by researchers to analyze the crystallographic structures of materials in functional devices (e.g. battery materials) or in complex sample environments (e.g. diamond anvil cells or syntheses reactors). An atomic structure of a material can be identified by its diffraction pattern along with a detailed analysis of the Rietveld refinement which yields rich information on the structure and the material, such as crystallite size, microstrain and defects. For in situ experiments, a series of XRD images is usually collected on the same sample under different conditions (e.g. adiabatic conditions) yielding different states of matter, or is simply collected continuously as a function of time to track the change of a sample during a chemical or physical process. In situ experiments are usually performed with area detectors and collect images composed of diffraction patterns. For an ideal powder, the diffraction pattern should be a series of concentric Debye-Scherrer rings with evenly distributed intensities in each ring. For a realistic sample, one may observe different characteristics other than the typical ring pattern, such as textures or preferred orientations and single-crystal diffraction spots. Textures or preferred orientations usually have several parts of a ring that are more intense than the rest, whereas single-crystal diffraction spots are localized intense spots owing to diffraction of large crystals, typically >10 µm. In this work, an investigation of machine learning methods is presented for fast and reliable identification and separation of the single-crystal diffraction spots in XRD images. The exclusion of artifacts during an XRD image integration process allows a precise analysis of the powder diffraction rings of interest. When it is trained with small subsets of highly diverse datasets, the gradient boosting method can consistently produce high-accuracy results. The method dramatically decreases the amount of time spent identifying and separating single-crystal diffraction spots in comparison with the conventional method.

6.
ACS Nano ; 14(11): 14846-14860, 2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33170644

RESUMEN

Sequential infiltration synthesis (SIS) is a route to the precision deposition of inorganic solids in analogy to atomic layer deposition but occurs within (vs upon) a soft material template. SIS has enabled exquisite nanoscale morphological complexity in various oxides through selective nucleation in block copolymers templates. However, the earliest stages of SIS growth remain unresolved, including the atomic structure of nuclei and the evolution of local coordination environments, before and after polymer template removal. We employed In K-edge extended X-ray absorption fine structure and atomic pair distribution function analysis of high-energy X-ray scattering to unravel (1) the structural evolution of InOxHy clusters inside a poly(methyl methacrylate) (PMMA) host matrix and (2) the formation of porous In2O3 solids (obtained after annealing) as a function of SIS cycle number. Early SIS cycles result in InOxHy cluster growth with high aspect ratio, followed by the formation of a three-dimensional network with additional SIS cycles. That the atomic structures of the InOxHy clusters can be modeled as multinuclear clusters with bonding patterns related to those in In2O3 and In(OH)3 crystal structures suggests that SIS may be an efficient route to 3D arrays of discrete-atom-number clusters. Annealing the mixed inorganic/polymer films in air removes the PMMA template and consolidates the as-grown clusters into cubic In2O3 nanocrystals with structural details that also depend on SIS cycle number.

7.
IUCrJ ; 6(Pt 2): 290-298, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30867926

RESUMEN

Atomic pair distribution function (PDF) analysis is the most powerful technique to study the structure of condensed matter on the length scale from short- to long-range order. Today, the PDF approach is an integral part of research on amorphous, nanocrystalline and disordered materials from bulk to nanoparticle size. Thin films, however, demand specific experimental strategies for enhanced surface sensitivity and sophisticated data treatment to obtain high-quality PDF data. The approach described here is based on the surface high-energy X-ray diffraction technique applying photon energies above 60 keV at grazing incidence. In this way, reliable PDFs were extracted from films of thicknesses down to a few nanometres. Compared with recently published reports on thin-film PDF analysis from both transmission and grazing-incidence geometries, this work brought the minimum detectable film thickness down by about a factor of ten. Depending on the scattering power of the sample, the data acquisition on such ultrathin films can be completed within fractions of a second. Hence, the rapid-acquisition grazing-incidence PDF method is a major advancement in thin-film technology that opens unprecedented possibilities for in situ and operando PDF studies in complex sample environments. By uncovering how the structure of a layered material on a substrate evolves and transforms in terms of local and average ordering, this technique offers new opportunities for understanding processes such as nucleation, growth, morphology evolution, crystallization and the related kinetics on the atomic level and in real time.

8.
Langmuir ; 32(10): 2436-44, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26907993

RESUMEN

The molecular interactions of three biologically important galactocerebrosides have been studied in monolayers formed at the soft air/water interface as 2D model membranes. Highly surface-sensitive techniques as GIXD (grazing incidence X-ray diffraction), IRRAS (infrared reflection-absorption spectroscopy), and BAM (Brewster angle microscopy) have been used. The study reveals that small differences in the chemical structure have a relevant impact on the physical-chemical properties and intermolecular interactions. The presence of a 2-d-hydroxyl group in the fatty acid favored for GalCer C24:0 (2-OH) monolayers a higher hydration state of the headgroup at low lateral pressures (<25 mN/m) and a higher condensation effect above 30 mN/m. An opposite behavior was recorded for GalCer C24:0 and GalCer C24:1, for which the intermolecular interactions are defined by the weakly hydrated but strong H-bonded interconnected head groups. Additionally, the 15-cis-double bond in the fatty acid chain (nervonic acid) of GalCer C24:1 stabilized the LE phase but did not disturb the packing parameters of the LC phase as compared with the saturated compound GalCer C24:0.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA