Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell Rep ; 43(7): 114491, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39002127

RESUMEN

Tissues release microRNAs (miRNAs) in small extracellular vesicles (sEVs) including exosomes, which can regulate gene expression in distal cells, thus acting as modulators of local and systemic metabolism. Here, we show that insulin regulates miRNA secretion into sEVs from 3T3-L1 adipocytes and that this process is differentially regulated from cellular expression. Thus, of the 53 miRNAs upregulated and 66 miRNAs downregulated by insulin in 3T3-L1 sEVs, only 12 were regulated in parallel in cells. Insulin regulated this process in part by phosphorylating hnRNPA1, causing it to bind to AU-rich motifs in miRNAs, mediating their secretion into sEVs. Importantly, 43% of insulin-regulated sEV-miRNAs are implicated in obesity and insulin resistance. These include let-7 and miR-103, which we show regulate insulin signaling in AML12 hepatocytes. Together, these findings demonstrate an important layer to insulin's regulation of adipose biology and provide a mechanism of tissue crosstalk in obesity and other hyperinsulinemic states.


Asunto(s)
Vesículas Extracelulares , Insulina , MicroARNs , Animales , Humanos , Ratones , Células 3T3-L1 , Adipocitos/metabolismo , Adipocitos/efectos de los fármacos , Vesículas Extracelulares/metabolismo , Regulación de la Expresión Génica , Hepatocitos/metabolismo , Ribonucleoproteína Nuclear Heterogénea A1/metabolismo , Ribonucleoproteína Nuclear Heterogénea A1/genética , Insulina/metabolismo , Resistencia a la Insulina , MicroARNs/metabolismo , MicroARNs/genética , Obesidad/metabolismo , Obesidad/genética , Fosforilación , Transducción de Señal
2.
Nat Commun ; 13(1): 5722, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36175400

RESUMEN

Visceral adiposity is a risk factor for severe COVID-19, and a link between adipose tissue infection and disease progression has been proposed. Here we demonstrate that SARS-CoV-2 infects human adipose tissue and undergoes productive infection in fat cells. However, susceptibility to infection and the cellular response depends on the anatomical origin of the cells and the viral lineage. Visceral fat cells express more ACE2 and are more susceptible to SARS-CoV-2 infection than their subcutaneous counterparts. SARS-CoV-2 infection leads to inhibition of lipolysis in subcutaneous fat cells, while in visceral fat cells, it results in higher expression of pro-inflammatory cytokines. Viral load and cellular response are attenuated when visceral fat cells are infected with the SARS-CoV-2 gamma variant. A similar degree of cell death occurs 4-days after SARS-CoV-2 infection, regardless of the cell origin or viral lineage. Hence, SARS-CoV-2 infects human fat cells, replicating and altering cell function and viability in a depot- and viral lineage-dependent fashion.


Asunto(s)
COVID-19 , SARS-CoV-2 , Tejido Adiposo , Enzima Convertidora de Angiotensina 2 , Citocinas , Humanos
3.
Free Radic Biol Med ; 173: 170-187, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33965563

RESUMEN

Extracellular microRNAs (miRNAs) have emerged as important mediators of cell-to-cell communication and intertissue crosstalk. MiRNAs are produced by virtually all types of eukaryotic cells and can be selectively packaged and released to the extracellular medium, where they may reach distal cells to regulate gene expression cell non-autonomously. By doing so, miRNAs participate in integrative physiology. Oxidative stress affects miRNA expression, while miRNAs control redox signaling. Disruption in miRNA expression, processing or release to the extracellular compartment are associated with aging and a number of chronic diseases, such as obesity, type 2 diabetes, neurodegenerative diseases and cancer, all of them being conditions related to oxidative stress. Here we discuss the interplay between redox balance and miRNA function and secretion as a determinant of health and disease states, reviewing the findings that support this notion and highlighting novel and yet understudied venues of research in the field.


Asunto(s)
Diabetes Mellitus Tipo 2 , Exosomas , MicroARNs , Diabetes Mellitus Tipo 2/metabolismo , Exosomas/metabolismo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Oxidación-Reducción , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA