Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Elife ; 132024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38488335

RESUMEN

To find nucleosomes, chromatin remodelers slide and hop along DNA, and their direction of approach affects the direction that nucleosomes slide in.


Asunto(s)
Nucleosomas , Proteínas de Saccharomyces cerevisiae , Proteínas de Unión al ADN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ensamble y Desensamble de Cromatina , Cromatina
2.
Nat Commun ; 15(1): 1000, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38307862

RESUMEN

The chromatin remodeler ALC1 is activated by DNA damage-induced poly(ADP-ribose) deposited by PARP1/PARP2 and their co-factor HPF1. ALC1 has emerged as a cancer drug target, but how it is recruited to ADP-ribosylated nucleosomes to affect their positioning near DNA breaks is unknown. Here we find that PARP1/HPF1 preferentially initiates ADP-ribosylation on the histone H2B tail closest to the DNA break. To dissect the consequences of such asymmetry, we generate nucleosomes with a defined ADP-ribosylated H2B tail on one side only. The cryo-electron microscopy structure of ALC1 bound to such an asymmetric nucleosome indicates preferential engagement on one side. Using single-molecule FRET, we demonstrate that this asymmetric recruitment gives rise to directed sliding away from the DNA linker closest to the ADP-ribosylation site. Our data suggest a mechanism by which ALC1 slides nucleosomes away from a DNA break to render it more accessible to repair factors.


Asunto(s)
Nucleosomas , Poli ADP Ribosilación , Nucleosomas/genética , Microscopía por Crioelectrón , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Cromatina , Reparación del ADN , Roturas del ADN
3.
Nat Chem Biol ; 18(10): 1144-1151, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36131148

RESUMEN

Many essential processes in the cell depend on proteins that use nucleoside triphosphates (NTPs). Methods that directly monitor the often-complex dynamics of these proteins at the single-molecule level have helped to uncover their mechanisms of action. However, the measurement throughput is typically limited for NTP-utilizing reactions, and the quantitative dissection of complex dynamics over multiple sequential turnovers remains challenging. Here we present a method for controlling NTP-driven reactions in single-molecule experiments via the local generation of NTPs (LAGOON) that markedly increases the measurement throughput and enables single-turnover observations. We demonstrate the effectiveness of LAGOON in single-molecule fluorescence and force spectroscopy assays by monitoring DNA unwinding, nucleosome sliding and RNA polymerase elongation. LAGOON can be readily integrated with many single-molecule techniques, and we anticipate that it will facilitate studies of a wide range of crucial NTP-driven processes.


Asunto(s)
Nucleósidos , Nucleosomas , ADN/química , ARN Polimerasas Dirigidas por ADN/química , Nucleósidos/química , Nucleótidos/metabolismo
4.
Elife ; 102021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34486521

RESUMEN

The chromatin remodeler ALC1 is recruited to and activated by DNA damage-induced poly(ADP-ribose) (PAR) chains deposited by PARP1/PARP2/HPF1 upon detection of DNA lesions. ALC1 has emerged as a candidate drug target for cancer therapy as its loss confers synthetic lethality in homologous recombination-deficient cells. However, structure-based drug design and molecular analysis of ALC1 have been hindered by the requirement for PARylation and the highly heterogeneous nature of this post-translational modification. Here, we reconstituted an ALC1 and PARylated nucleosome complex modified in vitro using PARP2 and HPF1. This complex was amenable to cryo-EM structure determination without cross-linking, which enabled visualization of several intermediate states of ALC1 from the recognition of the PARylated nucleosome to the tight binding and activation of the remodeler. Functional biochemical assays with PARylated nucleosomes highlight the importance of nucleosomal epitopes for productive remodeling and suggest that ALC1 preferentially slides nucleosomes away from DNA breaks.


Asunto(s)
Proteínas Portadoras/metabolismo , Ensamble y Desensamble de Cromatina , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Nucleosomas/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli ADP Ribosilación , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas Portadoras/genética , Microscopía por Crioelectrón , ADN Helicasas/genética , ADN Helicasas/ultraestructura , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/ultraestructura , Humanos , Cinética , Modelos Moleculares , Proteínas Nucleares/genética , Nucleosomas/genética , Nucleosomas/ultraestructura , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasas/genética , Unión Proteica , Conformación Proteica , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato
5.
Cell Rep ; 33(12): 108529, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33357431

RESUMEN

Upon DNA damage, the ALC1/CHD1L nucleosome remodeling enzyme (remodeler) is activated by binding to poly(ADP-ribose). How activated ALC1 recognizes the nucleosome, as well as how this recognition is coupled to remodeling, is unknown. Here, we show that remodeling by ALC1 requires a wild-type acidic patch on the entry side of the nucleosome. The cryo-electron microscopy structure of a nucleosome-ALC1 linker complex reveals a regulatory linker segment that binds to the acidic patch. Mutations within this interface alter the dynamics of ALC1 recruitment to DNA damage and impede the ATPase and remodeling activities of ALC1. Full activation requires acidic patch-linker segment interactions that tether the remodeler to the nucleosome and couple ATP hydrolysis to nucleosome mobilization. Upon DNA damage, such a requirement may be used to modulate ALC1 activity via changes in the nucleosome acidic patches.


Asunto(s)
Daño del ADN , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Nucleosomas/metabolismo , Animales , Histonas/metabolismo , Humanos , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Xenopus laevis
6.
Curr Opin Struct Biol ; 65: 61-68, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32634693

RESUMEN

Single-molecule fluorescence microscopy has long been appreciated as a powerful tool to study the structural dynamics that enable biological function of macromolecules. Recent years have witnessed the development of more complex single-molecule fluorescence techniques as well as powerful combinations with structural approaches to obtain mechanistic insights into the workings of various molecular machines and protein complexes. In this review, we highlight these developments that together bring us one step closer to a dynamic understanding of biological processes in atomic details.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Sustancias Macromoleculares/química , Imagen Individual de Molécula/métodos , Microscopía Fluorescente/métodos
7.
Nature ; 583(7818): 858-861, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32581356

RESUMEN

Many proteins that bind specific DNA sequences search the genome by combining three-dimensional diffusion with one-dimensional sliding on nonspecific DNA1-5. Here we combine resonance energy transfer and fluorescence correlation measurements to characterize how individual lac repressor (LacI) molecules explore the DNA surface during the one-dimensional phase of target search. To track the rotation of sliding LacI molecules on the microsecond timescale, we use real-time single-molecule confocal laser tracking combined with fluorescence correlation spectroscopy (SMCT-FCS). The fluctuations in fluorescence signal are accurately described by rotation-coupled sliding, in which LacI traverses about 40 base pairs (bp) per revolution. This distance substantially exceeds the 10.5-bp helical pitch of DNA; this suggests that the sliding protein frequently hops out of the DNA groove, which would result in the frequent bypassing of target sequences. We directly observe such bypassing using single-molecule fluorescence resonance energy transfer (smFRET). A combined analysis of the smFRET and SMCT-FCS data shows that LacI hops one or two grooves (10-20 bp) every 200-700 µs. Our data suggest a trade-off between speed and accuracy during sliding: the weak nature of nonspecific protein-DNA interactions underlies operator bypassing, but also speeds up sliding. We anticipate that SMCT-FCS, which monitors rotational diffusion on the microsecond timescale while tracking individual molecules with millisecond resolution, will be applicable to the real-time investigation of many other biological interactions and will effectively extend the accessible time regime for observing these interactions by two orders of magnitude.


Asunto(s)
ADN/química , Conformación de Ácido Nucleico , Regiones Operadoras Genéticas/genética , Especificidad por Sustrato , Sitios de Unión/genética , ADN/genética , Difusión , Transferencia Resonante de Energía de Fluorescencia , Cinética , Represoras Lac/metabolismo , Unión Proteica , Rotación , Imagen Individual de Molécula , Espectrometría de Fluorescencia , Especificidad por Sustrato/genética
8.
Nat Commun ; 10(1): 4603, 2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31601800

RESUMEN

Type I CRISPR-Cas loci provide prokaryotes with a nucleic-acid-based adaptive immunity against foreign DNA. Immunity involves adaptation, the integration of ~30-bp DNA fragments, termed prespacers, into the CRISPR array as spacers, and interference, the targeted degradation of DNA containing a protospacer. Interference-driven DNA degradation can be coupled with primed adaptation, in which spacers are acquired from DNA surrounding the targeted protospacer. Here we develop a method for strand-specific, high-throughput sequencing of DNA fragments, FragSeq, and apply this method to identify DNA fragments accumulated in Escherichia coli cells undergoing robust primed adaptation by a type I-E or type I-F CRISPR-Cas system. The detected fragments have sequences matching spacers acquired during primed adaptation and function as spacer precursors when introduced exogenously into cells by transformation. The identified prespacers contain a characteristic asymmetrical structure that we propose is a key determinant of integration into the CRISPR array in an orientation that confers immunity.


Asunto(s)
Sistemas CRISPR-Cas , Escherichia coli/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ADN Bacteriano/genética , Escherichia coli/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica , Microorganismos Modificados Genéticamente , Transgenes
9.
Nat Commun ; 10(1): 1720, 2019 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-30979890

RESUMEN

ATP-dependent chromatin remodelling enzymes (remodellers) regulate DNA accessibility in eukaryotic genomes. Many remodellers reposition (slide) nucleosomes, however, how DNA is propagated around the histone octamer during this process is unclear. Here we examine the real-time coordination of remodeller-induced DNA movements on both sides of the nucleosome using three-colour single-molecule FRET. During sliding by Chd1 and SNF2h remodellers, DNA is shifted discontinuously, with movement of entry-side DNA preceding that of exit-side DNA. The temporal delay between these movements implies a single rate-limiting step dependent on ATP binding and transient absorption or buffering of at least one base pair. High-resolution cross-linking experiments show that sliding can be achieved by buffering as few as 3 bp between entry and exit sides of the nucleosome. We propose that DNA buffering ensures nucleosome stability during ATP-dependent remodelling, and provides a means for communication between remodellers acting on opposite sides of the nucleosome.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Cromatina/química , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN/análisis , Nucleosomas/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfato/química , Animales , Tampones (Química) , ADN Helicasas/química , Transferencia Resonante de Energía de Fluorescencia , Histonas/química , Humanos , Unión Proteica , Saccharomyces cerevisiae/metabolismo , Xenopus
10.
Elife ; 52016 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-28032848

RESUMEN

Despite their canonical two-fold symmetry, nucleosomes in biological contexts are often asymmetric: functionalized with post-translational modifications (PTMs), substituted with histone variants, and even lacking H2A/H2B dimers. Here we show that the Widom 601 nucleosome positioning sequence can produce hexasomes in a specific orientation on DNA, providing a useful tool for interrogating chromatin enzymes and allowing for the generation of nucleosomes with precisely defined asymmetry. Using this methodology, we demonstrate that the Chd1 chromatin remodeler from Saccharomyces cerevisiae requires H2A/H2B on the entry side for sliding, and thus, unlike the back-and-forth sliding observed for nucleosomes, Chd1 shifts hexasomes unidirectionally. Chd1 takes part in chromatin reorganization surrounding transcribing RNA polymerase II (Pol II), and using asymmetric nucleosomes we show that ubiquitin-conjugated H2B on the entry side stimulates nucleosome sliding by Chd1. We speculate that biased nucleosome and hexasome sliding due to asymmetry contributes to the packing of arrays observed in vivo.


Asunto(s)
ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Nucleosomas/metabolismo , Procesamiento Proteico-Postraduccional , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/metabolismo , Animales , Ensamble y Desensamble de Cromatina , ADN Helicasas/genética , ADN de Hongos/genética , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/genética , Transferencia Resonante de Energía de Fluorescencia , Histonas/genética , Nucleosomas/genética , Nucleosomas/ultraestructura , ARN Polimerasa II/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Imagen Individual de Molécula , Transcripción Genética , Ubiquitina/genética , Ubiquitina/metabolismo , Xenopus laevis/genética , Xenopus laevis/metabolismo
11.
Microbiologyopen ; 5(3): 378-86, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26840800

RESUMEN

FtsZ - a prokaryotic tubulin homolog - is one of the central components of bacterial division machinery. At the early stage of cytokinesis FtsZ forms the so-called Z-ring at mid-cell that guides septum formation. Many approaches were used to resolve the structure of the Z-ring, however, researchers are still far from consensus on this question. We utilized single-molecule localization microscopy (SMLM) in combination with immunofluorescence staining to visualize FtsZ in Esherichia coli fixed cells that were grown under slow and fast growth conditions. This approach allowed us to obtain images of FtsZ structures at different stages of cell division and accurately measure Z-ring dimensions. Analysis of these images demonstrated that Z-ring thickness increases during constriction, starting at about 70 nm at the beginning of division and increasing by approximately 25% half-way through constriction.


Asunto(s)
Proteínas Bacterianas/genética , División Celular/genética , Proteínas del Citoesqueleto/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/genética , División Celular/fisiología , Técnica del Anticuerpo Fluorescente Indirecta , Microscopía Fluorescente , Tubulina (Proteína)/genética
12.
Nucleic Acids Res ; 44(2): 790-800, 2016 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-26687717

RESUMEN

Type II restriction-modification (R-M) systems encode a restriction endonuclease that cleaves DNA at specific sites, and a methyltransferase that modifies same sites protecting them from restriction endonuclease cleavage. Type II R-M systems benefit bacteria by protecting them from bacteriophages. Many type II R-M systems are plasmid-based and thus capable of horizontal transfer. Upon the entry of such plasmids into a naïve host with unmodified genomic recognition sites, methyltransferase should be synthesized first and given sufficient time to methylate recognition sites in the bacterial genome before the toxic restriction endonuclease activity appears. Here, we directly demonstrate a delay in restriction endonuclease synthesis after transformation of Escherichia coli cells with a plasmid carrying the Esp1396I type II R-M system, using single-cell microscopy. We further demonstrate that before the appearance of the Esp1396I restriction endonuclease the intracellular concentration of Esp1396I methyltransferase undergoes a sharp peak, which should allow rapid methylation of host genome recognition sites. A mathematical model that satisfactorily describes the observed dynamics of both Esp1396I enzymes is presented. The results reported here were obtained using a functional Esp1396I type II R-M system encoding both enzymes fused to fluorescent proteins. Similar approaches should be applicable to the studies of other R-M systems at single-cell level.


Asunto(s)
Enzimas de Restricción-Modificación del ADN/metabolismo , Análisis de la Célula Individual/métodos , Metilasas de Modificación del ADN/genética , Metilasas de Modificación del ADN/metabolismo , Enzimas de Restricción-Modificación del ADN/análisis , Enzimas de Restricción-Modificación del ADN/genética , Desoxirribonucleasa BamHI/genética , Desoxirribonucleasa BamHI/metabolismo , Escherichia coli/genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente , Modelos Biológicos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína Fluorescente Roja
13.
Biochem Biophys Res Commun ; 466(3): 426-30, 2015 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-26365346

RESUMEN

Deinococcus radiodurans can survive extreme doses of ionizing radiation due to the very efficient DNA repair mechanisms that are able to cope even with hundreds of double-strand breaks. RecA, the critical protein of homologous recombination in bacteria, is one of the key components of the DNA-repair system. Repair of double-strand breaks requires RecA binding to DNA and assembly of the RecA nucleoprotein helical filaments. The Escherichia coli RecA protein (EcRecA) and its interactions with DNA have been extensively studied using various approaches including single-molecule techniques, while the D. radiodurans RecA (DrRecA) remains much less characterized. However, DrRecA shows some remarkable differences from E. coli homolog. Here we combine microfluidics and single-molecule DNA manipulation with optical tweezers to follow the binding of DrRecA to long double-stranded DNA molecules and probe the mechanical properties of DrRecA nucleoprotein filaments at physiological pH. Our data provide a direct comparison of DrRecA and EcRecA binding to double-stranded DNA under identical conditions. We report a significantly faster filaments assembly as well as lower values of persistence length and contour length for DrRecA nucleoprotein filaments compared to EcRecA. Our results support the existing model of DrRecA forming more frequent and less continuous filaments relative to those of EcRecA.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Deinococcus/metabolismo , Rec A Recombinasas/metabolismo , Proteínas Bacterianas/química , Fenómenos Biomecánicos , Reparación del ADN , Proteínas de Unión al ADN/química , Deinococcus/efectos de la radiación , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Técnicas Analíticas Microfluídicas , Nucleoproteínas/química , Nucleoproteínas/metabolismo , Pinzas Ópticas , Multimerización de Proteína , Rec A Recombinasas/química
14.
J Proteomics ; 110: 117-28, 2014 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-25088052

RESUMEN

Mycoplasmas (class Mollicutes), the smallest prokaryotes capable of self-replication, as well as Archaea, Gram-positive and Gram-negative bacteria constitutively produce extracellular vesicles (EVs). However, little is known regarding the content and functions of mycoplasma vesicles. Here, we present for the first time a proteomics-based characterisation of extracellular membrane vesicles from Acholeplasma laidlawii PG8. The ubiquitous mycoplasma is widespread in nature, found in humans, animals and plants, and is the causative agent of phytomycoplasmoses and the predominant contaminant of cell cultures. Taking a proteomics approach using LC-ESI-MS/MS, we identified 97 proteins. Analysis of the identified proteins indicated that A. laidlawii-derived EVs are enriched in virulence proteins that may play critical roles in mycoplasma-induced pathogenesis. Our data will help to elucidate the functions of mycoplasma-derived EVs and to develop effective methods to control infections and contaminations of cell cultures by mycoplasmas. In the present study, we have documented for the first time the proteins in EVs secreted by mycoplasma vesicular proteins identified in this study are likely involved in the adaptation of bacteria to stressors, survival in microbial communities and pathogen-host interactions. These findings suggest that the secretion of EVs is an evolutionally conserved and universal process that occurs in organisms from the simplest wall-less bacteria to complex organisms and indicate the necessity of developing new approaches to control infects.


Asunto(s)
Acholeplasma laidlawii/metabolismo , Proteínas Bacterianas/química , Proteoma/química , Vesículas Transportadoras/metabolismo , Factores de Virulencia/química , Secuencia de Aminoácidos , Líquido Extracelular/metabolismo , Datos de Secuencia Molecular , Mycoplasma
15.
Biochemistry ; 52(45): 7890-900, 2013 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-24070253

RESUMEN

Villin is a gelsolin-like cytoskeleton regulator localized in the brush border at the apical end of epithelial cells. Villin regulates microvilli by bundling F-actin at low calcium levels and severing it at high calcium levels. The villin polypeptide consists of six gelsolin-like repeats (V1-V6) and the unique, actin binding C-terminal headpiece domain (HP). Villin modular fragment V6-HP requires calcium to stay monomeric and bundle F-actin. Our data show that isolated V6 is monomeric and does not bind F-actin at any level of calcium. We propose that the 40-residue unfolded V6-to-HP linker can be a key regulatory element in villin's functions such as its interactions with F-actin. Here we report a calcium-bound solution nuclear magnetic resonance (NMR) structure of V6, which has a gelsolin-like fold with the long α-helix in the extended conformation. Intrinsic tryptophan fluorescence quenching reveals two-Kd calcium binding in V6 (Kd1 of 22 µM and Kd2 of 2.8 mM). According to our NMR data, the conformation of V6 responds the most to micromolar calcium. We show that the long α-helix and the adjacent residues form the calcium-sensitive elements in V6. These observations are consistent with the calcium activation of F-actin severing by villin analogous to the gelsolin helix-straightening mechanism.


Asunto(s)
Calcio/química , Gelsolina/química , Proteínas de Microfilamentos/química , Actinas/química , Actinas/metabolismo , Cromatografía en Gel , Gelsolina/metabolismo , Vectores Genéticos , Humanos , Espectroscopía de Resonancia Magnética , Proteínas de Microfilamentos/metabolismo , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA