Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Plant Cell ; 36(2): 447-470, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37820736

RESUMEN

Plant nucleotide-binding leucine-rich repeat (NLRs) immune receptors directly or indirectly recognize pathogen-secreted effector molecules to initiate plant defense. Recognition of multiple pathogens by a single NLR is rare and usually occurs via monitoring for changes to host proteins; few characterized NLRs have been shown to recognize multiple effectors. The barley (Hordeum vulgare) NLR gene Mildew locus a (Mla) has undergone functional diversification, and the proteins encoded by different Mla alleles recognize host-adapted isolates of barley powdery mildew (Blumeria graminis f. sp. hordei [Bgh]). Here, we show that Mla3 also confers resistance to the rice blast fungus Magnaporthe oryzae in a dosage-dependent manner. Using a forward genetic screen, we discovered that the recognized effector from M. oryzae is Pathogenicity toward Weeping Lovegrass 2 (Pwl2), a host range determinant factor that prevents M. oryzae from infecting weeping lovegrass (Eragrostis curvula). Mla3 has therefore convergently evolved the capacity to recognize effectors from diverse pathogens.


Asunto(s)
Ascomicetos , Eragrostis , Hordeum , Magnaporthe , Virulencia/genética , Hordeum/genética , Eragrostis/metabolismo , Plantas/metabolismo , Especificidad del Huésped , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
PLoS Biol ; 21(1): e3001945, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36656825

RESUMEN

Studies focused solely on single organisms can fail to identify the networks underlying host-pathogen gene-for-gene interactions. Here, we integrate genetic analyses of rice (Oryza sativa, host) and rice blast fungus (Magnaporthe oryzae, pathogen) and uncover a new pathogen recognition specificity of the rice nucleotide-binding domain and leucine-rich repeat protein (NLR) immune receptor Pik, which mediates resistance to M. oryzae expressing the avirulence effector gene AVR-Pik. Rice Piks-1, encoded by an allele of Pik-1, recognizes a previously unidentified effector encoded by the M. oryzae avirulence gene AVR-Mgk1, which is found on a mini-chromosome. AVR-Mgk1 has no sequence similarity to known AVR-Pik effectors and is prone to deletion from the mini-chromosome mediated by repeated Inago2 retrotransposon sequences. AVR-Mgk1 is detected by Piks-1 and by other Pik-1 alleles known to recognize AVR-Pik effectors; recognition is mediated by AVR-Mgk1 binding to the integrated heavy metal-associated (HMA) domain of Piks-1 and other Pik-1 alleles. Our findings highlight how complex gene-for-gene interaction networks can be disentangled by applying forward genetics approaches simultaneously to the host and pathogen. We demonstrate dynamic coevolution between an NLR integrated domain and multiple families of effector proteins.


Asunto(s)
Oryza , Receptores Inmunológicos , Receptores Inmunológicos/metabolismo , Hongos/metabolismo , Enfermedades de las Plantas/microbiología , Interacciones Huésped-Patógeno/genética , Oryza/genética , Oryza/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
PLoS Pathog ; 18(9): e1010792, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36173975

RESUMEN

When infecting plants, fungal pathogens secrete cell wall-degrading enzymes (CWDEs) that break down cellulose and hemicellulose, the primary components of plant cell walls. Some fungal CWDEs contain a unique domain, named the carbohydrate binding module (CBM), that facilitates their access to polysaccharides. However, little is known about how plants counteract pathogen degradation of their cell walls. Here, we show that the rice cysteine-rich repeat secretion protein OsRMC binds to and inhibits xylanase MoCel10A of the blast fungus pathogen Magnaporthe oryzae, interfering with its access to the rice cell wall and degradation of rice xylan. We found binding of OsRMC to various CBM1-containing enzymes, suggesting that it has a general role in inhibiting the action of CBM1. OsRMC is localized to the apoplast, and its expression is strongly induced in leaves infected with M. oryzae. Remarkably, knockdown and overexpression of OsRMC reduced and enhanced rice defense against M. oryzae, respectively, demonstrating that inhibition of CBM1-containing fungal enzymes by OsRMC is crucial for rice defense. We also identified additional CBM-interacting proteins (CBMIPs) from Arabidopsis thaliana and Setaria italica, indicating that a wide range of plants counteract pathogens through this mechanism.


Asunto(s)
Arabidopsis , Oryza , Celulosa , Cisteína , Proteínas Fúngicas/genética , Oryza/genética , Xilanos
4.
Proc Natl Acad Sci U S A ; 119(27): e2116896119, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35771942

RESUMEN

Throughout their evolution, plant nucleotide-binding leucine-rich-repeat receptors (NLRs) have acquired widely divergent unconventional integrated domains that enhance their ability to detect pathogen effectors. However, the functional dynamics that drive the evolution of NLRs with integrated domains (NLR-IDs) remain poorly understood. Here, we reconstructed the evolutionary history of an NLR locus prone to unconventional domain integration and experimentally tested hypotheses about the evolution of NLR-IDs. We show that the rice (Oryza sativa) NLR Pias recognizes the effector AVR-Pias of the blast fungal pathogen Magnaporthe oryzae. Pias consists of a functionally specialized NLR pair, the helper Pias-1 and the sensor Pias-2, that is allelic to the previously characterized Pia pair of NLRs: the helper RGA4 and the sensor RGA5. Remarkably, Pias-2 carries a C-terminal DUF761 domain at a similar position to the heavy metal-associated (HMA) domain of RGA5. Phylogenomic analysis showed that Pias-2/RGA5 sensor NLRs have undergone recurrent genomic recombination within the genus Oryza, resulting in up to six sequence-divergent domain integrations. Allelic NLRs with divergent functions have been maintained transspecies in different Oryza lineages to detect sequence-divergent pathogen effectors. By contrast, Pias-1 has retained its NLR helper activity throughout evolution and is capable of functioning together with the divergent sensor-NLR RGA5 to respond to AVR-Pia. These results suggest that opposite selective forces have driven the evolution of paired NLRs: highly dynamic domain integration events maintained by balancing selection for sensor NLRs, in sharp contrast to purifying selection and functional conservation of immune signaling for helper NLRs.


Asunto(s)
Evolución Molecular , Magnaporthe , Proteínas NLR , Oryza , Enfermedades de las Plantas , Proteínas de Plantas , Receptores Inmunológicos , Ligamiento Genético , Interacciones Huésped-Patógeno/inmunología , Magnaporthe/genética , Magnaporthe/patogenicidad , Proteínas NLR/genética , Proteínas NLR/inmunología , Oryza/inmunología , Oryza/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/inmunología , Proteínas Inhibidoras de STAT Activados/genética , Proteínas Inhibidoras de STAT Activados/inmunología , Receptores Inmunológicos/genética , Receptores Inmunológicos/inmunología
5.
J Biol Chem ; 296: 100371, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33548226

RESUMEN

Microbial plant pathogens secrete effector proteins, which manipulate the host to promote infection. Effectors can be recognized by plant intracellular nucleotide-binding leucine-rich repeat (NLR) receptors, initiating an immune response. The AVR-Pik effector from the rice blast fungus Magnaporthe oryzae is recognized by a pair of rice NLR receptors, Pik-1 and Pik-2. Pik-1 contains a noncanonical integrated heavy-metal-associated (HMA) domain, which directly binds AVR-Pik to activate plant defenses. The host targets of AVR-Pik are also HMA-domain-containing proteins, namely heavy-metal-associated isoprenylated plant proteins (HIPPs) and heavy-metal-associated plant proteins (HPPs). Here, we demonstrate that one of these targets interacts with a wider set of AVR-Pik variants compared with the Pik-1 HMA domains. We define the biochemical and structural basis of the interaction between AVR-Pik and OsHIPP19 and compare the interaction to that formed with the HMA domain of Pik-1. Using analytical gel filtration and surface plasmon resonance, we show that multiple AVR-Pik variants, including the stealthy variants AVR-PikC and AVR-PikF, which do not interact with any characterized Pik-1 alleles, bind to OsHIPP19 with nanomolar affinity. The crystal structure of OsHIPP19 in complex with AVR-PikF reveals differences at the interface that underpin high-affinity binding of OsHIPP19-HMA to a wider set of AVR-Pik variants than achieved by the integrated HMA domain of Pik-1. Our results provide a foundation for engineering the HMA domain of Pik-1 to extend binding to currently unrecognized AVR-Pik variants and expand disease resistance in rice to divergent pathogen strains.


Asunto(s)
Ascomicetos/genética , Resistencia a la Enfermedad/inmunología , Alelos , Ascomicetos/metabolismo , Ascomicetos/patogenicidad , Resistencia a la Enfermedad/genética , Interacciones Huésped-Patógeno/inmunología , Magnaporthe/inmunología , Modelos Moleculares , Proteínas NLR/metabolismo , Oryza/genética , Oryza/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo
6.
PLoS One ; 15(9): e0238616, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32931489

RESUMEN

Plant NLR immune receptors are multidomain proteins that can function as specialized sensor/helper pairs. Paired NLR immune receptors are generally thought to function via negative regulation, where one NLR represses the activity of the second and detection of pathogen effectors relieves this repression to initiate immunity. However, whether this mechanism is common to all NLR pairs is not known. Here, we show that the rice NLR pair Pikp-1/Pikp-2, which confers resistance to strains of the blast pathogen Magnaporthe oryzae (syn. Pyricularia oryzae) expressing the AVR-PikD effector, functions via receptor cooperation, with effector-triggered activation requiring both NLRs to trigger the immune response. To investigate the mechanism of Pikp-1/Pikp-2 activation, we expressed truncated variants of these proteins, and made mutations in previously identified NLR sequence motifs. We found that any domain truncation, in either Pikp-1 or Pikp-2, prevented cell death in the presence of AVR-PikD, revealing that all domains are required for activity. Further, expression of individual Pikp-1 or Pikp-2 domains did not result in cell death. Mutations in the conserved P-loop and MHD sequence motifs in both Pikp-1 and Pikp-2 prevented cell death activation, demonstrating that these motifs are required for the function of the two partner NLRs. Finally, we showed that Pikp-1 and Pikp-2 associate to form homo- and hetero-complexes in planta in the absence of AVR-PikD; on co-expression the effector binds to Pikp-1 generating a tri-partite complex. Taken together, we provide evidence that Pikp-1 and Pikp-2 form a fine-tuned system that is activated by AVR-PikD via receptor cooperation rather than negative regulation.


Asunto(s)
Proteínas NLR/metabolismo , Oryza/citología , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Muerte Celular , Proteínas NLR/química , Proteínas de Plantas/química , Unión Proteica , Dominios Proteicos
7.
Microbes Environ ; 35(3)2020.
Artículo en Inglés | MEDLINE | ID: mdl-32893195

RESUMEN

Microbial community structures associated with halophytes and their compositions among different habitats, particularly natural saline sites, have not yet been investigated in detail. In the present study, we examined the diversity and composition of the rhizosphere and root endosphere bacteria of two halophytes, Salicornia europaea L. and Glaux maritima L., collected from two adjacent brackish lakes, Lake Notoro and Lake Tofutsu, in Japan. The bacterial species richness and diversity indices of the two halophytes collected from both lakes showed no significant differences in the rhizosphere or root endosphere. In contrast, beta diversity and taxonomic analyses revealed significant differences in the bacterial communities from each halophyte between the two lakes even though the two locations were natural saline sites, indicating that the bacterial communities for S. europaea and G. maritima both fluctuated in a manner that depended on the geographical location. Common and abundant genera associated with each halophyte across the two lakes were then identified to verify the bacterial genera specifically inhabiting each plant species. The results obtained showed that the composition of abundant genera inhabiting each halophyte across two lakes was distinct from that reported previously in other saline soil areas. These results suggest that each halophyte in different geographical sites had an individual complex bacterial community.


Asunto(s)
Lagos/microbiología , Microbiota , Rizosfera , Plantas Tolerantes a la Sal/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Biodiversidad , Chenopodiaceae/microbiología , Japón , Lagos/química , Filogeografía , Raíces de Plantas/microbiología , Primulaceae/microbiología , ARN Ribosómico 16S/genética
8.
Mol Plant Pathol ; 20(12): 1682-1695, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31560822

RESUMEN

The ascomycete fungus Magnaporthe oryzae is a hemibiotrophic pathogen that causes rice blast disease. Magnaporthe oryzae infects rice leaves, stems and panicles, and induces severe reductions in yield. Effector proteins secreted by M. oryzae in planta are thought to be involved its virulence activity. Here, using RNA-sequencing (RNA-Seq), we generated transcriptome data for M. oryzae isolate Ina168 during the initial stages of infection. We prepared samples from conidia (the inoculum) and from peeled epidermal cotyledon tissue of susceptible barley Hordeum vulgare 'Nigrate' at 12, 24, 36 and 48 hours post-inoculation (hpi). We also generated a draft genome sequence of M. oryzae isolate Ina168 and used it as a reference for mapping the RNA-Seq reads. Gene expression profiling across all stages of M. oryzae infection revealed 1728 putative secreted effector protein genes. We selected seven such genes that were strongly up-regulated at 12 hpi and down-regulated at 24 or 36 hpi and performed gene knockout analysis to determine their roles in pathogenicity. Knockout of MoSVP, encoding a small putative secreted protein with a hydrophobic surface binding protein A domain, resulted in a reduction in pathogenicity, suggesting that MoSVP is a novel virulence effector of M. oryzae.


Asunto(s)
Proteínas Fúngicas/fisiología , Genes Fúngicos , Hordeum/microbiología , Magnaporthe/patogenicidad , Enfermedades de las Plantas/microbiología , Proteínas Fúngicas/genética , Técnicas de Inactivación de Genes , Magnaporthe/genética , RNA-Seq , Virulencia/genética
9.
J Biol Chem ; 294(35): 13006-13016, 2019 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-31296569

RESUMEN

Unconventional integrated domains in plant intracellular immune receptors of the nucleotide-binding leucine-rich repeat (NLRs) type can directly bind translocated effector proteins from pathogens and thereby initiate an immune response. The rice (Oryza sativa) immune receptor pairs Pik-1/Pik-2 and RGA5/RGA4 both use integrated heavy metal-associated (HMA) domains to bind the effectors AVR-Pik and AVR-Pia, respectively, from the rice blast fungal pathogen Magnaporthe oryzae These effectors both belong to the MAX effector family and share a core structural fold, despite being divergent in sequence. How integrated domains in NLRs maintain specificity of effector recognition, even of structurally similar effectors, has implications for understanding plant immune receptor evolution and function. Here, using plant cell death and pathogenicity assays and protein-protein interaction analyses, we show that the rice NLR pair Pikp-1/Pikp-2 triggers an immune response leading to partial disease resistance toward the "mis-matched" effector AVR-Pia in planta and that the Pikp-HMA domain binds AVR-Pia in vitro We observed that the HMA domain from another Pik-1 allele, Pikm, cannot bind AVR-Pia, and it does not trigger a plant response. The crystal structure of Pikp-HMA bound to AVR-Pia at 1.9 Å resolution revealed a binding interface different from those formed with AVR-Pik effectors, suggesting plasticity in integrated domain-effector interactions. The results of our work indicate that a single NLR immune receptor can bait multiple pathogen effectors via an integrated domain, insights that may enable engineering plant immune receptors with extended disease resistance profiles.


Asunto(s)
Magnaporthe/inmunología , Proteínas NLR/inmunología , Oryza/inmunología , Enfermedades de las Plantas/inmunología , Modelos Moleculares , Proteínas NLR/química , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Unión Proteica
10.
Proc Natl Acad Sci U S A ; 116(2): 496-505, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30584105

RESUMEN

Plant pathogens have optimized their own effector sets to adapt to their hosts. However, certain effectors, regarded as core effectors, are conserved among various pathogens, and may therefore play an important and common role in pathogen virulence. We report here that the widely distributed fungal effector NIS1 targets host immune components that transmit signaling from pattern recognition receptors (PRRs) in plants. NIS1 from two Colletotrichum spp. suppressed the hypersensitive response and oxidative burst, both of which are induced by pathogen-derived molecules, in Nicotiana benthamianaMagnaporthe oryzae NIS1 also suppressed the two defense responses, although this pathogen likely acquired the NIS1 gene via horizontal transfer from Basidiomycota. Interestingly, the root endophyte Colletotrichum tofieldiae also possesses a NIS1 homolog that can suppress the oxidative burst in N. benthamiana We show that NIS1 of multiple pathogens commonly interacts with the PRR-associated kinases BAK1 and BIK1, thereby inhibiting their kinase activities and the BIK1-NADPH oxidase interaction. Furthermore, mutations in the NIS1-targeting proteins, i.e., BAK1 and BIK1, in Arabidopsis thaliana also resulted in reduced immunity to Colletotrichum fungi. Finally, M. oryzae lacking NIS1 displayed significantly reduced virulence on rice and barley, its hosts. Our study therefore reveals that a broad range of filamentous fungi maintain and utilize the core effector NIS1 to establish infection in their host plants and perhaps also beneficial interactions, by targeting conserved and central PRR-associated kinases that are also known to be targeted by bacterial effectors.


Asunto(s)
Proteínas Portadoras/inmunología , Proteínas Fúngicas/inmunología , Magnaporthe/inmunología , Nicotiana , Enfermedades de las Plantas , Proteínas de Plantas/inmunología , Proteínas Serina-Treonina Quinasas/inmunología , Transducción de Señal/inmunología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Nicotiana/inmunología , Nicotiana/microbiología
11.
Front Microbiol ; 9: 2878, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30555434

RESUMEN

Root-associated microbial communities are very important in the adaptation of halophytes to coastal environments. However, little has been reported on microbial community structures related to halophytes, or on comparisons of their compositions among halophytic plant species. Here, we studied the diversity and community structure of both rhizosphere and root endosphere bacteria in two halophytic plants: Glaux maritima and Salicornia europaea. We sampled the rhizosphere, the root endosphere, and bulk control soil samples, and performed bacterial 16S rRNA sequencing using the Illumina MiSeq platform to characterize the bacterial community diversities in the rhizosphere and root endosphere of both halophytes. Among the G. maritima samples, the richness and diversity of bacteria in the rhizosphere were higher than those in the root endosphere but were lower than those of the bulk soil. In contrast for S. europaea, the bulk soil, the rhizosphere, and the root endosphere all had similar bacterial richness and diversity. The number of unique operational taxonomic units within the root endosphere, the rhizosphere, and the bulk soil were 181, 366, and 924 in G. maritima and 126, 416, and 596 in S. europaea, respectively, implying habitat-specific patterns for each halophyte. In total, 35 phyla and 566 genera were identified. The dominant phyla across all samples were Proteobacteria and Bacteroidetes. Actinobacteria was extremely abundant in the root endosphere from G. maritima. Beneficial bacterial genera were enriched in the root endosphere and rhizosphere in both halophytes. Rhizobium, Actinoplanes, and Marinomonas were highly abundant in G. maritima, whereas Sulfurimonas and Coleofasciculus were highly abundant in S. europaea. A principal coordinate analysis demonstrated significant differences in the microbiota composition associated with the plant species and type of sample. These results strongly indicate that there are clear differences in bacterial community structure and diversity between G. maritima and S. europaea. This is the first report to characterize the root microbiome of G. maritima, and to compare the diversity and community structure of rhizosphere and root endosphere bacteria between G. maritima and S. europaea.

12.
Nat Plants ; 4(9): 734, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30127412

RESUMEN

In the version of this Article originally published, in Fig. 1b the single-letter code for the amino acid polymorphism at position 46 in the schematic of the AVR-PikE variant was incorrectly given as 'H'. The correct amino acid is 'N'. This has now been amended in all versions of the Article.

13.
Nat Plants ; 4(8): 576-585, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29988155

RESUMEN

Accelerated adaptive evolution is a hallmark of plant-pathogen interactions. Plant intracellular immune receptors (NLRs) often occur as allelic series with differential pathogen specificities. The determinants of this specificity remain largely unknown. Here, we unravelled the biophysical and structural basis of expanded specificity in the allelic rice NLR Pik, which responds to the effector AVR-Pik from the rice blast pathogen Magnaporthe oryzae. Rice plants expressing the Pikm allele resist infection by blast strains expressing any of three AVR-Pik effector variants, whereas those expressing Pikp only respond to one. Unlike Pikp, the integrated heavy metal-associated (HMA) domain of Pikm binds with high affinity to each of the three recognized effector variants, and variation at binding interfaces between effectors and Pikp-HMA or Pikm-HMA domains encodes specificity. By understanding how co-evolution has shaped the response profile of an allelic NLR, we highlight how natural selection drove the emergence of new receptor specificities. This work has implications for the engineering of NLRs with improved utility in agriculture.


Asunto(s)
Inmunidad Innata , Magnaporthe/inmunología , Proteínas NLR/fisiología , Oryza/inmunología , Proteínas de Plantas/fisiología , Polimorfismo Genético , Proteínas Fúngicas/inmunología , Proteínas Fúngicas/metabolismo , Interacciones Huésped-Patógeno/inmunología , Magnaporthe/metabolismo , Magnaporthe/patogenicidad , Modelos Inmunológicos , Modelos Moleculares , Proteínas NLR/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
14.
Mol Plant Microbe Interact ; 31(1): 34-45, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29144205

RESUMEN

A diversity of plant-associated organisms secrete effectors-proteins and metabolites that modulate plant physiology to favor host infection and colonization. However, effectors can also activate plant immune receptors, notably nucleotide-binding domain and leucine-rich repeat region (NLR)-containing proteins, enabling plants to fight off invading organisms. This interplay between effectors, their host targets, and the matching immune receptors is shaped by intricate molecular mechanisms and exceptionally dynamic coevolution. In this article, we focus on three effectors, AVR-Pik, AVR-Pia, and AVR-Pii, from the rice blast fungus Magnaporthe oryzae (syn. Pyricularia oryzae), and their corresponding rice NLR immune receptors, Pik, Pia, and Pii, to highlight general concepts of plant-microbe interactions. We draw 12 lessons in effector and NLR biology that have emerged from studying these three little effectors and are broadly applicable to other plant-microbe systems.


Asunto(s)
Interacciones Huésped-Patógeno , Proteínas NLR/metabolismo , Plantas/metabolismo , Plantas/microbiología , Secuencia de Aminoácidos , Evolución Biológica , Variación Genética , Proteínas NLR/química , Proteínas NLR/genética , Plantas/inmunología , Selección Genética
15.
BMC Genomics ; 18(1): 897, 2017 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-29166857

RESUMEN

BACKGROUND: Downy mildew, caused by the oomycete pathogen Sclerospora graminicola, is an economically important disease of Gramineae crops including foxtail millet (Setaria italica). Plants infected with S. graminicola are generally stunted and often undergo a transformation of flower organs into leaves (phyllody or witches' broom), resulting in serious yield loss. To establish the molecular basis of downy mildew disease in foxtail millet, we carried out whole-genome sequencing and an RNA-seq analysis of S. graminicola. RESULTS: Sequence reads were generated from S. graminicola using an Illumina sequencing platform and assembled de novo into a draft genome sequence comprising approximately 360 Mbp. Of this sequence, 73% comprised repetitive elements, and a total of 16,736 genes were predicted from the RNA-seq data. The predicted genes included those encoding effector-like proteins with high sequence similarity to those previously identified in other oomycete pathogens. Genes encoding jacalin-like lectin-domain-containing secreted proteins were enriched in S. graminicola compared to other oomycetes. Of a total of 1220 genes encoding putative secreted proteins, 91 significantly changed their expression levels during the infection of plant tissues compared to the sporangia and zoospore stages of the S. graminicola lifecycle. CONCLUSIONS: We established the draft genome sequence of a downy mildew pathogen that infects Gramineae plants. Based on this sequence and our transcriptome analysis, we generated a catalog of in planta-induced candidate effector genes, providing a solid foundation from which to identify the effectors causing phyllody.


Asunto(s)
Genoma , Oomicetos/genética , Enfermedades de las Plantas , Setaria (Planta) , Tamaño del Genoma , Heterocigoto , Oomicetos/metabolismo , Oomicetos/patogenicidad , Lectinas de Plantas/genética , Proteínas/genética , Proteínas/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos
16.
Plant J ; 89(2): 381-393, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27711985

RESUMEN

Plant immune responses triggered upon recognition of microbe-associated molecular patterns (MAMPs) typically restrict pathogen growth without a host cell death response. We isolated two Arabidopsis mutants, derived from accession Col-0, that activated cell death upon inoculation with nonadapted fungal pathogens. Notably, the mutants triggered cell death also when treated with bacterial MAMPs such as flg22. Positional cloning identified NSL1 (Necrotic Spotted Lesion 1) as a responsible gene for the phenotype of the two mutants, whereas nsl1 mutations of the accession No-0 resulted in necrotic lesion formation without pathogen inoculation. NSL1 encodes a protein of unknown function containing a putative membrane-attack complex/perforin (MACPF) domain. The application of flg22 increased salicylic acid (SA) accumulation in the nsl1 plants derived from Col-0, while depletion of isochorismate synthase 1 repressed flg22-inducible lesion formation, indicating that elevated SA is needed for the cell death response. nsl1 plants of Col-0 responded to flg22 treatment with an RBOHD-dependent oxidative burst, but this response was dispensable for the nsl1-dependent cell death. Surprisingly, loss-of-function mutations in PEN2, involved in the metabolism of tryptophan (Trp)-derived indole glucosinolates, suppressed the flg22-induced and nsl1-dependent cell death. Moreover, the increased accumulation of SA in the nsl1 plants was abrogated by blocking Trp-derived secondary metabolite biosynthesis, whereas the nsl1-dependent hyperaccumulation of PEN2-dependent compounds was unaffected when the SA biosynthesis pathway was blocked. Collectively, these findings suggest that MAMP-triggered immunity activates a genetically programmed cell death in the absence of the functional MACPF domain protein NSL1 via Trp-derived secondary metabolite-mediated activation of the SA pathway.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Proteínas Nucleares/metabolismo , Triptófano/metabolismo , Arabidopsis/citología , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Muerte Celular/inmunología , Membrana Celular/metabolismo , Colletotrichum/patogenicidad , Regulación de la Expresión Génica de las Plantas , Variación Genética , Proteínas Fluorescentes Verdes/genética , Mutación , Proteínas Nucleares/genética , Células Vegetales/metabolismo , Hojas de la Planta , Plantas Modificadas Genéticamente , Dominios Proteicos , Especies Reactivas de Oxígeno/metabolismo , Ácido Salicílico/metabolismo
17.
Mol Plant Pathol ; 18(5): 754-764, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27733021

RESUMEN

Plant-pathogenic fungi cause diseases to all major crop plants world-wide and threaten global food security. Underpinning fungal diseases are virulence genes facilitating plant host colonization that often marks pathogenesis and crop failures, as well as an increase in staple food prices. Fungal molecular genetics is therefore the cornerstone to the sustainable prevention of disease outbreaks. Pathogenicity studies using mutant collections provide immense function-based information regarding virulence genes of economically relevant fungi. These collections are rich in potential targets for existing and new biological control agents. They contribute to host resistance breeding against fungal pathogens and are instrumental in searching for novel resistance genes through the identification of fungal effectors. Therefore, functional analyses of mutant collections propel gene discovery and characterization, and may be incorporated into disease management strategies. In the light of these attributes, mutant collections enhance the development of practical solutions to confront modern agricultural constraints. Here, a critical review of mutant collections constructed by various laboratories during the past decade is provided. We used Magnaporthe oryzae and Fusarium graminearum studies to show how mutant screens contribute to bridge existing knowledge gaps in pathogenicity and fungal-host interactions.


Asunto(s)
Hongos/patogenicidad , Plantas/microbiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/genética , Fusarium/patogenicidad , Genoma Fúngico/genética , Interacciones Huésped-Patógeno , Magnaporthe/genética , Magnaporthe/patogenicidad , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Virulencia/genética
18.
BMC Genomics ; 17: 370, 2016 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-27194050

RESUMEN

BACKGROUND: Magnaporthe oryzae (anamorph Pyricularia oryzae) is the causal agent of blast disease of Poaceae crops and their wild relatives. To understand the genetic mechanisms that drive host specialization of M. oryzae, we carried out whole genome resequencing of four M. oryzae isolates from rice (Oryza sativa), one from foxtail millet (Setaria italica), three from wild foxtail millet S. viridis, and one isolate each from finger millet (Eleusine coracana), wheat (Triticum aestivum) and oat (Avena sativa), in addition to an isolate of a sister species M. grisea, that infects the wild grass Digitaria sanguinalis. RESULTS: Whole genome sequence comparison confirmed that M. oryzae Oryza and Setaria isolates form a monophyletic and close to another monophyletic group consisting of isolates from Triticum and Avena. This supports previous phylogenetic analysis based on a small number of genes and molecular markers. When comparing the host specific subgroups, 1.2-3.5 % of genes showed presence/absence polymorphisms and 0-6.5 % showed an excess of non-synonymous substitutions. Most of these genes encoded proteins whose functional domains are present in multiple copies in each genome. Therefore, the deleterious effects of these mutations could potentially be compensated by functional redundancy. Unlike the accumulation of nonsynonymous nucleotide substitutions, gene loss appeared to be independent of divergence time. Interestingly, the loss and gain of genes in pathogens from the Oryza and Setaria infecting lineages occurred more frequently when compared to those infecting Triticum and Avena even though the genetic distance between Oryza and Setaria lineages was smaller than that between Triticum and Avena lineages. In addition, genes showing gain/loss and nucleotide polymorphisms are linked to transposable elements highlighting the relationship between genome position and gene evolution in this pathogen species. CONCLUSION: Our comparative genomics analyses of host-specific M. oryzae isolates revealed gain and loss of genes as a major evolutionary mechanism driving specialization to Oryza and Setaria. Transposable elements appear to facilitate gene evolution possibly by enhancing chromosomal rearrangements and other forms of genetic variation.


Asunto(s)
Elementos Transponibles de ADN , Genes Fúngicos , Variación Genética , Interacciones Huésped-Patógeno , Magnaporthe/genética , Mapeo Cromosómico , Cromosomas Fúngicos , Evolución Molecular , Genoma Fúngico , Genómica/métodos , Magnaporthe/clasificación , Mutación , Filogenia
20.
New Phytol ; 210(4): 1282-97, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26864209

RESUMEN

Understanding how plants allocate their resources to growth or defence is of long-term importance to the development of new and improved varieties of different crops. Using molecular genetics, plant physiology, hormone analysis and Next-Generation Sequencing (NGS)-based transcript profiling, we have isolated and characterized the rice (Oryza sativa) LESION AND LAMINA BENDING (LLB) gene that encodes a chloroplast-targeted putative leucine carboxyl methyltransferase. Loss of LLB function results in reduced growth and yield, hypersensitive response (HR)-like lesions, accumulation of the antimicrobial compounds momilactones and phytocassanes, and constitutive expression of pathogenesis-related genes. Consistent with these defence-associated responses, llb shows enhanced resistance to rice blast (Magnaporthe oryzae) and bacterial blight (Xanthomonas oryzae pv. oryzae). The lesion and resistance phenotypes are likely to be caused by the over-accumulation of jasmonates (JAs) in the llb mutant including the JA precursor 12-oxo-phytodienoic acid. Additionally, llb shows an increased lamina inclination and enhanced early seedling growth due to elevated brassinosteroid (BR) synthesis and/or signalling. These findings show that LLB functions in the chloroplast to either directly or indirectly repress both JA- and BR-mediated responses, revealing a possible mechanism for controlling how plants allocate resources for defence and growth.


Asunto(s)
Resistencia a la Enfermedad , Magnaporthe/fisiología , Oryza/genética , Enfermedades de las Plantas/inmunología , Xanthomonas/fisiología , Secuencia de Aminoácidos , Cloroplastos/metabolismo , Ciclopentanos/metabolismo , Ácidos Grasos Insaturados/metabolismo , Genes Reporteros , Mutación , Oryza/crecimiento & desarrollo , Oryza/inmunología , Oxilipinas/metabolismo , Fenotipo , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/inmunología , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA