Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Elife ; 112022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35762204

RESUMEN

Microtubules are dynamic polymers consisting of αß-tubulin heterodimers. The initial polymerization process, called microtubule nucleation, occurs spontaneously via αß-tubulin. Since a large energy barrier prevents microtubule nucleation in cells, the γ-tubulin ring complex is recruited to the centrosome to overcome the nucleation barrier. However, a considerable number of microtubules can polymerize independently of the centrosome in various cell types. Here, we present evidence that the minus-end-binding calmodulin-regulated spectrin-associated protein 2 (CAMSAP2) serves as a strong nucleator for microtubule formation by significantly reducing the nucleation barrier. CAMSAP2 co-condensates with αß-tubulin via a phase separation process, producing plenty of nucleation intermediates. Microtubules then radiate from the co-condensates, resulting in aster-like structure formation. CAMSAP2 localizes at the co-condensates and decorates the radiating microtubule lattices to some extent. Taken together, these in vitro findings suggest that CAMSAP2 supports microtubule nucleation and growth by organizing a nucleation centre as well as by stabilizing microtubule intermediates and growing microtubules.


Cells are able to hold their shape thanks to tube-like structures called microtubules that are made of hundreds of tubulin proteins. Microtubules are responsible for maintaining the uneven distribution of molecules throughout the cell, a phenomenon known as polarity that allows cells to differentiate into different types with various roles. A protein complex called the γ-tubulin ring complex (γ-TuRC) is necessary for microtubules to form. This protein helps bind the tubulin proteins together and stabilises microtubules. However, recent research has found that in highly polarized cells such as neurons, which have highly specialised regions, microtubules can form without γ-TuRC. Searching for the proteins that could be filling in for γ-TuRC in these cells some evidence has suggested that a group known as CAMSAPs may be involved, but it is not known how. To characterize the role of CAMSAPs, Imasaki, Kikkawa et al. studied how one of these proteins, CAMSAP2, interacts with tubulins. To do this, they reconstituted both CAMSAP2 and tubulins using recombinant biotechnology and mixed them in solution. These experiments showed that CAMSAP2 can help form microtubules by bringing together their constituent proteins so that they can bind to each other more easily. Once microtubules start to form, CAMSAP2 continues to bind to them, stabilizing them and enabling them to grow to full size. These results shed light on how polarity is established in cells such as neurons, muscle cells, and epithelial cells. Additionally, the ability to observe intermediate structures during microtubule formation can provide insights into the processes that these structures are involved in.


Asunto(s)
Espectrina , Tubulina (Proteína) , Proteínas Asociadas a Microtúbulos/metabolismo , Centro Organizador de los Microtúbulos/metabolismo , Microtúbulos/metabolismo , Espectrina/metabolismo , Tubulina (Proteína)/metabolismo
2.
Nat Commun ; 12(1): 7102, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34876589

RESUMEN

Various stressors such as viral infection lead to the suppression of cap-dependent translation and the activation of the integrated stress response (ISR), since the stress-induced phosphorylated eukaryotic translation initiation factor 2 [eIF2(αP)] tightly binds to eIF2B to prevent it from exchanging guanine nucleotide molecules on its substrate, unphosphorylated eIF2. Sandfly fever Sicilian virus (SFSV) evades this cap-dependent translation suppression through the interaction between its nonstructural protein NSs and host eIF2B. However, its precise mechanism has remained unclear. Here, our cryo-electron microscopy (cryo-EM) analysis reveals that SFSV NSs binds to the α-subunit of eIF2B in a competitive manner with eIF2(αP). Together with SFSV NSs, eIF2B retains nucleotide exchange activity even in the presence of eIF2(αP), in line with the cryo-EM structures of the eIF2B•SFSV NSs•unphosphorylated eIF2 complex. A genome-wide ribosome profiling analysis clarified that SFSV NSs expressed in cultured human cells attenuates the ISR triggered by thapsigargin, an endoplasmic reticulum stress inducer. Furthermore, SFSV NSs introduced in rat hippocampal neurons and human induced-pluripotent stem (iPS) cell-derived motor neurons exhibits neuroprotective effects against the ISR-inducing stress. Since ISR inhibition is beneficial in various neurological disease models, SFSV NSs may be a promising therapeutic ISR inhibitor.


Asunto(s)
Factor 2B Eucariótico de Iniciación/química , Factor 2B Eucariótico de Iniciación/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo , Enfermedades de los Animales , Animales , Línea Celular , Microscopía por Crioelectrón , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 2B Eucariótico de Iniciación/genética , Femenino , Humanos , Modelos Moleculares , Neuronas , Phlebovirus , Fosforilación , Unión Proteica , Ratas , Ratas Wistar , Ribosomas , Proteínas Virales/genética
3.
Mol Cell ; 81(1): 88-103.e6, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33220178

RESUMEN

The small molecule ISRIB antagonizes the activation of the integrated stress response (ISR) by phosphorylated translation initiation factor 2, eIF2(αP). ISRIB and eIF2(αP) bind distinct sites in their common target, eIF2B, a guanine nucleotide exchange factor for eIF2. We have found that ISRIB-mediated acceleration of eIF2B's nucleotide exchange activity in vitro is observed preferentially in the presence of eIF2(αP) and is attenuated by mutations that desensitize eIF2B to the inhibitory effect of eIF2(αP). ISRIB's efficacy as an ISR inhibitor in cells also depends on presence of eIF2(αP). Cryoelectron microscopy (cryo-EM) showed that engagement of both eIF2B regulatory sites by two eIF2(αP) molecules remodels both the ISRIB-binding pocket and the pockets that would engage eIF2α during active nucleotide exchange, thereby discouraging both binding events. In vitro, eIF2(αP) and ISRIB reciprocally opposed each other's binding to eIF2B. These findings point to antagonistic allostery in ISRIB action on eIF2B, culminating in inhibition of the ISR.


Asunto(s)
Acetamidas/química , Ciclohexilaminas/química , Factor 2B Eucariótico de Iniciación/química , Factor 2 Eucariótico de Iniciación/química , Regulación Alostérica , Animales , Sitios de Unión , Células CHO , Cricetulus , Microscopía por Crioelectrón , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 2B Eucariótico de Iniciación/genética , Factor 2B Eucariótico de Iniciación/metabolismo , Células HeLa , Humanos , Fosforilación
4.
Plant Direct ; 5(12): e370, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34988354

RESUMEN

The suppressor of gamma response 1 (SOG1), a NAM, ATAF1, 2, and CUC2 (NAC)-type transcription factor found in seed plants, is a master regulator of DNA damage responses (DDRs). Upon DNA damage, SOG1 regulates the expression of downstream DDR genes. To know the origin of the DDR network in land plants, we searched for a homolog(s) of SOG1 in a moss Physcomitrium (Physcomitrella) patens and identified PpSOG1a and PpSOG1b. To assess if either or both of them function(s) in DDR, we knocked out the PpSOG1s using CRISPR/Cas9-mediated gene editing and analyzed the responses to DNA-damaging treatments. The double-knockout (KO) sog1a sog1b plants showed resistance to γ-rays, bleomycin, and ultraviolet B (UVB) treatments similarly seen in Arabidopsis sog1 plants. Next, we irradiated wild-type (WT) and KO plants with γ-rays and analyzed the whole transcriptome to examine the effect on the expression of DDR genes. The results revealed that many P. patens genes involved in the checkpoint, DNA repair, replication, and cell cycle-related genes were upregulated after γ-irradiation, which was not seen in sog1a sog1b plant. These results suggest that PpSOG1a and PpSOG1b work redundantly on DDR response in P. patens; in addition, plant-specific DDR systems had been established before the emergence of vascular plants.

6.
Front Plant Sci ; 10: 1208, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31649692

RESUMEN

Plant genomes sustain various forms of DNA damage that stall replication forks. Translesion synthesis (TLS) is one of the pathways to overcome stalled replication in which specific polymerases (TLS polymerase) perform bypass synthesis across DNA damage. This article gives a brief overview of plant TLS polymerases. In Arabidopsis, DNA polymerase (Pol) ζ, η, κ, θ, and λ and Reversionless1 (Rev1) are shown to be involved in the TLS. For example, AtPolη bypasses ultraviolet (UV)-induced cyclobutane pyrimidine dimers in vitro. Disruption of AtPolζ or AtPolη increases root stem cell death after UV irradiation. These results suggest that AtPolζ and ATPolη bypass UV-induced damage, prevent replication arrest, and allow damaged cells to survive and grow. In general, TLS polymerases have low fidelity and often induce mutations. Accordingly, disruption of AtPolζ or AtRev1 reduces somatic mutation frequency, whereas disruption of AtPolη elevates it, suggesting that plants have both mutagenic and less mutagenic TLS activities. The stalled replication fork can be resolved by a strand switch pathway involving a DNA helicase Rad5. Disruption of both AtPolζ and AtRAD5a shows synergistic or additive effects in the sensitivity to DNA-damaging agents. Moreover, AtPolζ or AtRev1 disruption elevates homologous recombination frequencies in somatic tissues. These results suggest that the Rad5-dependent pathway and TLS are parallel. Plants grown in the presence of heat shock protein 90 (HSP90) inhibitor showed lower mutation frequencies, suggesting that HSP90 regulates mutagenic TLS in plants. Hypersensitivities of TLS-deficient plants to γ-ray and/or crosslink damage suggest that plant TLS polymerases have multiple roles, as reported in other organisms.

7.
Science ; 364(6439): 495-499, 2019 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-31048492

RESUMEN

A core event in the integrated stress response, an adaptive pathway common to all eukaryotic cells in response to various stress stimuli, is the phosphorylation of eukaryotic translation initiation factor 2 (eIF2). Normally, unphosphorylated eIF2 transfers the methionylated initiator tRNA to the ribosome in a guanosine 5'-triphosphate-dependent manner. By contrast, phosphorylated eIF2 inhibits its specific guanine nucleotide exchange factor, eIF2B. To elucidate how the eIF2 phosphorylation status regulates the eIF2B activity, we determined cryo-electron microscopic and crystallographic structures of eIF2B in complex with unphosphorylated or phosphorylated eIF2. The unphosphorylated and phosphorylated forms of eIF2 bind to eIF2B in completely different manners: the nucleotide exchange-active and -inactive modes, respectively. These structures explain how phosphorylated eIF2 dominantly inhibits the nucleotide exchange activity of eIF2B.


Asunto(s)
Factor 2B Eucariótico de Iniciación/antagonistas & inhibidores , Factor 2B Eucariótico de Iniciación/química , Factor 2 Eucariótico de Iniciación/química , Estrés Fisiológico , Secuencias de Aminoácidos , Microscopía por Crioelectrón , Factor 2B Eucariótico de Iniciación/metabolismo , Humanos , Fosforilación
8.
Mol Cell ; 74(6): 1205-1214.e8, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31080011

RESUMEN

Translation initiation of hepatitis C virus (HCV) genomic RNA is induced by an internal ribosome entry site (IRES). Our cryoelectron microscopy (cryo-EM) analysis revealed that the HCV IRES binds to the solvent side of the 40S platform of the cap-dependently translating 80S ribosome. Furthermore, we obtained the cryo-EM structures of the HCV IRES capturing the 40S subunit of the IRES-dependently translating 80S ribosome. In the elucidated structures, the HCV IRES "body," consisting of domain III except for subdomain IIIb, binds to the 40S subunit, while the "long arm," consisting of domain II, remains flexible and does not impede the ongoing translation. Biochemical experiments revealed that the cap-dependently translating ribosome becomes a better substrate for the HCV IRES than the free ribosome. Therefore, the HCV IRES is likely to efficiently induce the translation initiation of its downstream mRNA with the captured translating ribosome as soon as the ongoing translation terminates.


Asunto(s)
Factores Eucarióticos de Iniciación/química , Hepacivirus/genética , Iniciación de la Cadena Peptídica Traduccional , ARN Viral/química , Subunidades Ribosómicas Grandes de Eucariotas/ultraestructura , Subunidades Ribosómicas Pequeñas de Eucariotas/ultraestructura , Sitios de Unión , Microscopía por Crioelectrón , Factores Eucarióticos de Iniciación/genética , Factores Eucarióticos de Iniciación/metabolismo , Células HEK293 , Hepacivirus/metabolismo , Interacciones Huésped-Patógeno , Humanos , Sitios Internos de Entrada al Ribosoma , Modelos Moleculares , Conformación de Ácido Nucleico , ARN Viral/genética , ARN Viral/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/genética , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo
9.
Pediatrics ; 143(3)2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30765462

RESUMEN

A 14-year-old girl developed 4 episodes of anaphylaxis of unknown etiology, which required intramuscular adrenaline administration each time. She had eaten pizza and a cheeseburger immediately before the first 2 episodes, respectively, but had not eaten anything for several hours before the last 2 episodes. It turned out that she had eaten the same ice lolly 4 hours before the first 3 episodes and a Café au lait Swirkle (a half-frozen beverage) 4 hours before the last episode. We detected carboxymethylcellulose sodium as the only common ingredient in all anaphylactic episodes. Skin prick tests were positive for carboxymethylcellulose solution and carboxymethylcellulose-containing food products. We obtained a custom-made carboxymethylcellulose sodium-free ice lolly from the manufacturer and confirmed that it did not induce anaphylactic reactions by a challenge test. Carboxymethylcellulose, an anionic water-soluble polymer derived from native cellulose, is considered to be unabsorbable from the human gut and has been widely and increasingly used in pharmaceutical preparations, cosmetics, and food. This article is the first report of anaphylaxis caused by carboxymethylcellulose-containing foods, whereas anaphylaxis to carboxymethylcellulose has been rarely associated with carboxymethylcellulose-containing pharmaceuticals. Although the exact mechanisms underlying the induction of late-onset anaphylaxis by carboxymethylcellulose remain unclear, a small minority of cellulose-digesting microbial flora in the human colon and contamination of food products with carboxymethylcellulose of low molecular weight might be involved. The induction of recurrent anaphylaxis by various products should be a clue that prompts physicians to suspect food additives as a cause for anaphylaxis.


Asunto(s)
Anafilaxia/inducido químicamente , Anafilaxia/diagnóstico , Carboximetilcelulosa de Sodio/efectos adversos , Carboximetilcelulosa de Sodio/análisis , Aditivos Alimentarios/efectos adversos , Aditivos Alimentarios/análisis , Adolescente , Femenino , Humanos
10.
Mol Cell ; 73(4): 738-748.e9, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30595437

RESUMEN

A class of translation inhibitors, exemplified by the natural product rocaglamide A (RocA), isolated from Aglaia genus plants, exhibits antitumor activity by clamping eukaryotic translation initiation factor 4A (eIF4A) onto polypurine sequences in mRNAs. This unusual inhibitory mechanism raises the question of how the drug imposes sequence selectivity onto a general translation factor. Here, we determined the crystal structure of the human eIF4A1⋅ATP analog⋅RocA⋅polypurine RNA complex. RocA targets the "bi-molecular cavity" formed characteristically by eIF4A1 and a sharply bent pair of consecutive purines in the RNA. Natural amino acid substitutions found in Aglaia eIF4As changed the cavity shape, leading to RocA resistance. This study provides an example of an RNA-sequence-selective interfacial inhibitor fitting into the space shaped cooperatively by protein and RNA with specific sequences.


Asunto(s)
Benzofuranos/metabolismo , Factor 4A Eucariótico de Iniciación/metabolismo , Biosíntesis de Proteínas , Inhibidores de la Síntesis de la Proteína/metabolismo , ARN/metabolismo , Ribosomas/metabolismo , Adenilil Imidodifosfato/química , Adenilil Imidodifosfato/metabolismo , Aglaia/química , Aglaia/genética , Aglaia/metabolismo , Sustitución de Aminoácidos , Benzofuranos/química , Benzofuranos/aislamiento & purificación , Benzofuranos/farmacología , Sitios de Unión , Resistencia a Medicamentos/genética , Factor 4A Eucariótico de Iniciación/química , Factor 4A Eucariótico de Iniciación/genética , Células HEK293 , Humanos , Modelos Moleculares , Estructura Molecular , Mutación , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Unión Proteica , Biosíntesis de Proteínas/efectos de los fármacos , Biosíntesis de Proteínas/genética , Dominios y Motivos de Interacción de Proteínas , Inhibidores de la Síntesis de la Proteína/química , Inhibidores de la Síntesis de la Proteína/aislamiento & purificación , Inhibidores de la Síntesis de la Proteína/farmacología , ARN/química , Ribosomas/química , Ribosomas/efectos de los fármacos , Ribosomas/genética , Relación Estructura-Actividad
11.
Sci Rep ; 8(1): 16622, 2018 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-30413746

RESUMEN

When a spermatozoon shows chemotactic behavior, transient [Ca2+]i increases in the spermatozoon are induced by an attractant gradient. The [Ca2+]i increase triggers a series of stereotypic responses of flagellar waveforms that comprise turning and straight-swimming. However, the molecular mechanism of [Ca2+]i modulation controlled by the attractants is not well defined. Here, we examined receptive mechanisms for the sperm attractant, SAAF, in the ascidian, Ciona intestinalis, and identified a plasma membrane Ca2+-ATPase (PMCA) as a SAAF-binding protein. PMCA is localized in sperm flagella membranes and seems to interact with SAAF through basic amino acids located in the second and third extracellular loops. ATPase activity of PMCA was enhanced by SAAF, and PMCA inhibitors, 5(6)-Carboxyeosin diacetate and Caloxin 2A1, inhibited chemotactic behavior of the sperm. Furthermore, Caloxin 2A1 seemed to inhibit efflux of [Ca2+]i in the sperm, and SAAF seemed to competitively reduce the effect of Caloxin 2A1. On the other hand, chemotactic behavior of the sperm was disordered not only at low-Ca2+, but also at high-Ca2+ conditions. Thus, PMCA is a potent candidate for the SAAF receptor, and direct control of Ca2+ efflux via PMCA is a fundamental mechanism to mediate chemotactic behavior in the ascidian spermatozoa.


Asunto(s)
Calcio/metabolismo , Membrana Celular/enzimología , Quimiotaxis , Ciona intestinalis/fisiología , Péptidos/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Espermatozoides/fisiología , Animales , Señalización del Calcio , Colestanoles/metabolismo , Péptidos y Proteínas de Señalización Intercelular , Masculino , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética , Motilidad Espermática , Ésteres del Ácido Sulfúrico/metabolismo
12.
J Cell Biol ; 217(12): 4155-4163, 2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30275105

RESUMEN

The Tau family microtubule-associated proteins (MAPs) promote microtubule stabilization and regulate microtubule-based motility. They share the C-terminal microtubule-binding domain, which includes three to five tubulin-binding repeats. Different numbers of repeats formed by alternative splicing have distinct effects on the activities of these proteins, and the distribution of these variants regulates fundamental physiological phenomena in cells. In this study, using cryo-EM, we visualized the MAP4 microtubule complex with the molecular motor kinesin-1. MAP4 bound to the C-terminal domains of tubulins along the protofilaments stabilizes the longitudinal contacts of the microtubule. The strongest bond of MAP4 was found around the intertubulin-dimer interface such that MAP4 coexists on the microtubule with kinesin-1 bound to the intratubulin-dimer interface as well. MAP4, consisting of five repeats, further folds and accumulates above the intertubulin-dimer interface, interfering with kinesin-1 movement. Therefore, these cryo-EM studies reveal new insight into the structural basis of microtubule stabilization and inhibition of kinesin motility by the Tau family MAPs.


Asunto(s)
Cinesinas , Proteínas Asociadas a Microtúbulos , Microtúbulos , Humanos , Cinesinas/química , Cinesinas/metabolismo , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/química , Microtúbulos/metabolismo , Microtúbulos/ultraestructura
13.
Genes (Basel) ; 9(2)2018 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-29414843

RESUMEN

The purpose of this study was to investigate whether the moss Physcomitrella patens cells are more resistant to ionizing radiation than animal cells. Protoplasts derived from P. patens protonemata were irradiated with γ-rays of 50-1000 gray (Gy). Clonogenicity of the protoplasts decreased in a γ-ray dose-dependent manner. The dose that decreased clonogenicity by half (LD50) was 277 Gy, which indicated that the moss protoplasts were 200-times more radioresistant than human cells. To investigate the mechanism of radioresistance in P. patens, we irradiated protoplasts on ice and initial double-strand break (DSB) yields were measured using the pulsed-field gel electrophoresis assay. Induced DSBs linearly increased dependent on the γ-ray dose and the DSB yield per Gb DNA per Gy was 2.2. The DSB yield in P. patens was half to one-third of those reported in mammals and yeasts, indicating that DSBs are difficult to induce in P. patens. The DSB yield per cell per LD50 dose in P. patens was 311, which is three- to six-times higher than those in mammals and yeasts, implying that P. patens is hyperresistant to DSBs. Physcomitrella patens is indicated to possess unique mechanisms to inhibit DSB induction and provide resistance to high numbers of DSBs.

14.
Biochim Biophys Acta Biomembr ; 1860(5): 981-990, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29317195

RESUMEN

The voltage sensor domain (VSD) is a protein domain that confers sensitivity to membrane potential in voltage-gated ion channels as well as the voltage-sensing phosphatase. Although VSDs have long been considered to function as regulatory units acting on adjacent effectors, recent studies have revealed the existence of direct ion permeation paths in some mutated VSDs and in the voltage-gated proton channel. In this study, we show that calcium currents are evoked upon membrane hyperpolarization in cells expressing a VSD derived from an ascidian voltage-gated ion channel superfamily. Unlike the previously reported omega-pore in the Shaker K+ channel and rNav1.4, mutations are not required. From electrophysiological experiments in heterologous expression systems, we found that the conductance is directly mediated by the VSD itself and is carried by both monovalent and divalent cations. This is the first report of divalent cation permeation through a VSD-like structure.


Asunto(s)
Canales de Calcio , Cationes Bivalentes/metabolismo , Activación del Canal Iónico , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Animales , Canales de Calcio/química , Canales de Calcio/genética , Canales de Calcio/metabolismo , Ciona intestinalis/genética , Ciona intestinalis/metabolismo , Conductividad Eléctrica , Femenino , Células HEK293 , Humanos , Activación del Canal Iónico/genética , Potenciales de la Membrana/genética , Permeabilidad , Dominios Proteicos/genética , Xenopus
15.
J Radiat Res ; 58(6): 772-781, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28637346

RESUMEN

Ion beams have been used as an effective tool in mutation breeding for the creation of crops with novel characteristics. Recent analyses have revealed that ion beams induce large chromosomal alterations, in addition to small mutations comprising base changes or frameshifts. In an effort to understand the potential capability of ion beams, we analyzed an Arabidopsis mutant possessing an abnormal genetic trait. The Arabidopsis mutant uvh3-2 is hypersensitive to UVB radiation when photoreactivation is unavailable. uvh3-2 plants grow normally and produce seeds by self-pollination. SSLP and CAPS analyses of F2 plants showed abnormal recombination frequency on chromosomes 2 and 3. PCR-based analysis and sequencing revealed that one-third of chromosome 3 was translocated to chromosome 2 in uvh3-2. FISH analysis using a 180 bp centromeric repeat and 45S ribosomal DNA (rDNA) as probes showed that the 45S rDNA signal was positioned away from that of the 180 bp centromeric repeat in uvh3-2, suggesting the insertion of a large chromosome fragment into the chromosome with 45S rDNA clusters. F1 plants derived from a cross between uvh3-2 and wild-type showed reduced fertility. PCR-based analysis of F2 plants suggested that reproductive cells carrying normal chromosome 2 and uvh3-2-derived chromosome 3 are unable to survive and therefore produce zygote. These results showed that ion beams could induce marked genomic alterations, and could possibly lead to the generation of novel plant species and crop strains.


Asunto(s)
Arabidopsis/genética , Aberraciones Cromosómicas , Cromosomas de las Plantas/genética , Mutación/genética , Arabidopsis/efectos de la radiación , Emparejamiento Base/genética , Segregación Cromosómica/efectos de la radiación , Cruzamientos Genéticos , ADN Ribosómico/genética , Fertilidad/genética , Fertilidad/efectos de la radiación , Iones , Reacción en Cadena de la Polimerasa , Recombinación Genética/genética , Rayos Ultravioleta
16.
J Vis Exp ; (119)2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-28117786

RESUMEN

In most mammals, auditory ossicles in the middle ear, including the malleus, incus and stapes, are the smallest bones. In mice, a bony structure called the auditory bulla houses the ossicles, whereas the auditory capsule encloses the inner ear, namely the cochlea and semicircular canals. Murine ossicles are essential for hearing and thus of great interest to researchers in the field of otolaryngology, but their metabolism, development, and evolution are highly relevant to other fields. Altered bone metabolism can affect hearing function in adult mice, and various gene-deficient mice show changes in morphogenesis of auditory ossicles in utero. Although murine auditory ossicles are tiny, their manipulation is feasible if one understands their anatomical orientation and 3D structure. Here, we describe how to dissect the auditory bulla and capsule of postnatal mice and then isolate individual ossicles by removing part of the bulla. We also discuss how to embed the bulla and capsule in different orientations to generate paraffin or frozen sections suitable for preparation of longitudinal, horizontal, or frontal sections of the malleus. Finally, we enumerate anatomical differences between mouse and human auditory ossicles. These methods would be useful in analyzing pathological, developmental and evolutionary aspects of auditory ossicles and the middle ear in mice.


Asunto(s)
Osículos del Oído/patología , Animales , Osículos del Oído/diagnóstico por imagen , Yunque/patología , Martillo/patología , Ratones , Estribo/patología , Microtomografía por Rayos X
18.
Biol Reprod ; 92(1): 8, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25395676

RESUMEN

Seminal vesicle secretion 2 (SVS2) is a protein secreted by the mouse seminal vesicle. We previously demonstrated that SVS2 regulates fertilization in mice; SVS2 is attached to a ganglioside GM1 on the plasma membrane of the sperm head and inhibits sperm capacitation in in vitro fertilization as a decapacitation factor. Furthermore, male mice lacking SVS2 display prominently reduced fertility in vivo, which indicates that SVS2 protects spermatozoa from some spermicidal attack in the uterus. In this study, we tried to investigate the mechanisms by which SVS2 controls in vivo sperm capacitation. SVS2-deficient males that mated with wild-type partners resulted in decreased cholesterol levels on ejaculated sperm in the uterine cavity. SVS2 prevented cholesterol efflux from the sperm plasma membrane and incorporated liberated cholesterol in the sperm plasma membrane, thereby reversibly preventing the induction of sperm capacitation by bovine serum albumin and methyl-beta-cyclodextrin in vitro. SVS2 enters the uterus and the uterotubal junction, arresting sperm capacitation in this area. Therefore, our results show that SVS2 keeps sterols on the sperm plasma membrane and plays a key role in unlocking sperm capacitation in vivo.


Asunto(s)
Proteínas de Secreción de la Vesícula Seminal/farmacología , Capacitación Espermática/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Esteroles/metabolismo , Animales , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Citoprotección/efectos de los fármacos , Trompas Uterinas/efectos de los fármacos , Trompas Uterinas/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Recombinantes/farmacología , Proteínas de Secreción de la Vesícula Seminal/fisiología , Espermatozoides/metabolismo
19.
Brain Dev ; 37(2): 200-5, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24768169

RESUMEN

AIM: Congenital cytomegalovirus (CMV) infection can cause a variety of neurological deficits of delayed onset in infants who are asymptomatic at birth. The aim of this study was to investigate the prevalence of congenital CMV infection among children with autism spectrum disorder (ASD) in Nagasaki, Japan. METHODS: Twenty-nine children with ASD who were born in Nagasaki and had no other major neurological deficits were recruited. Two of the patients were excluded due to significant perinatal events. The remaining 27 children were investigated retrospectively for congenital CMV infection by analyzing dried blood spot samples or dried umbilical cords for CMV DNA using real-time PCR. RESULTS: CMV DNA was detected in two (7.4%) of the 27 children. Neither of the patients had perinatal histories suggestive of congenital CMV disease or other neurological deficits, including hearing impairment and epilepsy. The severity of their autistic disorders varied considerably. CONCLUSIONS: The rate of congenital CMV infection in this study (two of 27 children with ASD), which was significantly (p=0.004) higher than the incidence of congenital CMV infection in Nagasaki (0.31%, 10/3230 live births), suggests the involvement of congenital CMV infection in a portion of children with ASD, although definite diagnosis was not obtained due to limited clinical data of the study subjects.


Asunto(s)
Trastornos Generalizados del Desarrollo Infantil/complicaciones , Infecciones por Citomegalovirus/congénito , Infecciones por Citomegalovirus/diagnóstico , Citomegalovirus/genética , Niño , Trastornos Generalizados del Desarrollo Infantil/epidemiología , Preescolar , Citomegalovirus/patogenicidad , Infecciones por Citomegalovirus/complicaciones , Infecciones por Citomegalovirus/epidemiología , Epilepsia/etiología , Femenino , Pérdida Auditiva/etiología , Humanos , Lactante , Masculino , Estudios Retrospectivos , Índice de Severidad de la Enfermedad
20.
ACS Appl Mater Interfaces ; 6(10): 7695-704, 2014 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-24712291

RESUMEN

The hydrothermal treatment of a titanium plate in a mixed aqueous solution of hydrogen peroxide and aqueous phosphoric acid under different conditions results in the formation of various titanium phosphate thin films. The films have various crystal structures such as Ti2O3(H2PO4)2·2H2O, α-titanium phosphate (Ti(HPO4)2·H2O), π-titanium phosphate (Ti2O(PO4)2·H2O), or low-crystallinity titanium phosphate and different morphologies that have not been previously reported such as nanobelts, microflowers, nanosheets, nanorods, or nanoplates. The present study also suggests the mechanisms behind the formation of these thin films. The crystal structure and morphology of the titanium phosphate thin films depend strongly on the concentration of the aqueous hydrogen peroxide solution, the amount of phosphoric acid, and the reaction temperature. In particular, hydrogen peroxide plays an important role in the formation of the titanium phosphate thin films. Moreover, controllable wettability of the titanium phosphate thin films, including superhydrophilicity and superhydrophobicity, is reported. Superhydrophobic surfaces with controllable adhesion to water droplets are obtained on π-titanium phosphate nanorod thin films modified with alkylamine molecules. The adhesion force between a water droplet and the thin film depends on the alkyl chain length of the alkylamine and the duration of ultraviolet irradiation utilized for photocatalytic degradation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA