Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Lipid Res ; 65(7): 100572, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38823780

RESUMEN

Contrast-enhanced computed tomography offers a nondestructive approach to studying adipose tissue in 3D. Several contrast-enhancing staining agents (CESAs) have been explored, whereof osmium tetroxide (OsO4) is the most popular nowadays. However, due to the toxicity and volatility of the conventional OsO4, alternative CESAs with similar staining properties were desired. Hf-WD 1:2 POM and Hexabrix have proven effective for structural analysis of adipocytes using contrast-enhanced computed tomography but fail to provide chemical information. This study introduces isotonic Lugol's iodine (IL) as an alternative CESA for adipose tissue analysis, comparing its staining potential with Hf-WD 1:2 POM and Hexabrix in murine caudal vertebrae and bovine muscle tissue strips. Single and sequential staining protocols were compared to assess the maximization of information extraction from each sample. The study investigated interactions, distribution, and reactivity of iodine species towards biomolecules using simplified model systems and assesses the potential of the CESA to provide chemical information. (Bio)chemical analyses on whole tissues revealed that differences in adipocyte gray values post-IL staining were associated with chemical distinctions between bovine muscle tissue and murine caudal vertebrae. More specific, a difference in the degree of unsaturation of fatty acids was identified as a likely contributor, though not the sole determinant of gray value differences. This research sheds light on the potential of IL as a CESA, offering both structural and chemical insights into adipose tissue composition.

2.
J Magn Reson ; 363: 107702, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38788358

RESUMEN

Magnetic Resonance Imaging (MRI) often encounters image quality degradation due to magnetic field inhomogeneities. Conventional passive shimming techniques involve the manual placement of discrete magnetic materials, imposing limitations on correcting complex inhomogeneities. To overcome this, we propose a novel 3D printing method utilizing binder jetting technology to enable precise deposition of a continuous range of concentrations of ferromagnetic ink. This approach grants complete control of the magnitude of the magnetic moment within the passive shim enabling tailored corrections of B0 field inhomogeneities. By optimizing the magnetic field distribution using linear programming and an in-house written Computer-Aided Design (CAD) generation software, we printed shims with promising results in generating low spherical harmonic corrections. Experimental evaluations demonstrate feasibility of these 3D printed passive shims to induce target magnetic fields corresponding to second-order spherical harmonic, as evidenced by acquired B0 maps. The electrically insulating properties of the printed shims eliminate the risk of eddy currents and heating, thus ensuring safety. The dimensional fabrication accuracy of the printed shims surpasses previous methods, enabling more precise and localized correction of subject-specific inhomogeneities. The findings highlight the potential of binder-jetted 3D printed passive shims in MRI shimming as a versatile and efficient solution for fabricating passive shims, with the potential to enhance the quality of MRI imaging while also being applicable to other types of Magnetic Resonance systems.

3.
J Magn Reson ; 357: 107578, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37952431

RESUMEN

Cellular macroencapsulation devices, known as tissue engineered grafts (TEGs), enable the transplantation of allogeneic cells without the need for life-long systemic immunosuppression. Islet containing TEGs offer promise as a potential functional cure for type 1 diabetes. Previous research has indicated sustained functionality of implanted islets at high density in a TEG requires external supplementary oxygen delivery and an effective tool to monitor TEG oxygen levels. A proven oxygen-measurement approach employs a 19F oxygen probe molecule (a perfluorocarbon) implanted alongside therapeutic cells to enable oxygen- and temperature- dependent NMR relaxometry. Although the approach has proved effective, the clinical translation of 19F oxygen relaxometry for TEG monitoring will be limited by the current inaccessibility and high cost of MRI. Here, we report the development of an affordable, compact, and tabletop 19F NMR relaxometry system for monitoring TEG oxygenation. The system uses a 0.5 T Halbach magnet with a bore diameter (19 cm) capable of accommodating the human arm, a potential site of future TEG implantation. 19F NMR relaxometry was performed while controlling the temperature and oxygenation levels of a TEG using a custom-built perfusion setup. Despite the magnet's nonuniform field, a pulse sequence of broadband adiabatic full-passage pulses enabled accurate 19F longitudinal relaxation rate (R1) measurements in times as short as ∼2 min (R1 vs oxygen partial pressure and temperature (R2 > 0.98)). The estimated sensitivity of R1 to oxygen changes at 0.5 T was 1.62-fold larger than the sensitivity previously reported for 16.4 T. We conclude that TEG oxygenation monitoring with a compact, tabletop 19F NMR relaxometry system appears feasible.


Asunto(s)
Fluorocarburos , Imagen por Resonancia Magnética , Humanos , Espectroscopía de Resonancia Magnética , Oxígeno , Temperatura
4.
Chem Sci ; 14(16): 4401-4412, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37123179

RESUMEN

Chemical treatment of end-of-life PVC at high temperature often results in the formation of polyacetylene and eventually aromatic char. These insoluble conjugated polymers lead to industrial reactor blockages, and limit the efficiency in recycling chlorinated plastic waste. To address this challenge, a solvent-based tandem dehydrochlorination-hydrogenation process is proposed for the conversion of PVC to a saturated polymer backbone. When combining tetrabutylphosphonium ionic liquids and homogeneous Rh catalysts under H2 pressure, 81% dehydrochlorination is reached in 2 h, with the hydrogenation proceeding smoothly with minimal catalyst use of 0.5-2.0 mol% Rh. This process for PVC dechlorination yields soluble products that lack aromatics, have high degrees of dechlorination and possess a tunable content of double bonds. The chemical structures of the partially unsaturated polymer products and of the different structural motifs in the product are accurately monitored by a liquid 1H-NMR method. Finally, X-ray absorption spectroscopy (XAS) sheds light on the catalytic Rh species during the tandem process, which are stabilized by the ionic liquid. This tandem process enables rapid PVC conversion to a saturated organic product, with polyethylene segments giving the opportunity for ensuing recycling steps.

5.
Small Methods ; 7(7): e2201454, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36995027

RESUMEN

Quantum dots (QDs) are semiconductor nanocrystals that are used in optoelectronic applications. Most modern QDs are based on toxic metals, for example Cd, and do not comply with the European Restriction of Hazardous Substances regulation of the European Union. Latest promising developments focus on safer QD alternatives based on elements from the III-V group. However, the InP-based QDs lack an overall photostability under environmental influences. One design path of achieving stability is through encapsulation in cross-linked polymer matrices with the possibility to covalently link the matrix to surface ligands of modified core-shell QDs. The work focuses on the formation of polymer microbeads suitable for InP-based QD encapsulation, allowing for an individual protection of QDs and an improved processibility via this particle-based approach. For this, a microfluidic based method in the co-flow regime is used that consists of an oil-in-water droplet system in a glass capillary environment. The generated monomer droplets are polymerized in-flow into poly(LMA-co-EGDMA) microparticles with embedded InP/ZnSe/ZnS QDs using a UV initiation. They demonstrate how a successful polymer microparticle formation via droplet microfluidics produces optimized matrix structures leading to a distinct photostability improvement of InP-based QDs compared to nonprotected QDs.

6.
Gels ; 8(12)2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36547337

RESUMEN

The supramolecular gelation of small molecules is typically preceded by an external stimulus to trigger the self-assembly. The need for this trigger stems from the metastable nature of most supramolecular gels and can limit their applicability. Herein, we present a small urea-based molecule that spontaneously forms a stable hydrogel by simple mixing without the addition of an external trigger. Single particle tracking experiments and observations made from scanning electron microscopy indicated that triggerless gelation occurred in a similar fashion as the archetypical heat-triggered gelation. These results could stimulate the search for other supramolecular hydrogels that can be obtained by simple mixing. Furthermore, the mechanism of the heat-triggered supramolecular gelation was elucidated by a combination of molecular dynamics simulations and quantitative NMR experiments. Surprisingly, hydrogelation seemingly occurs via a stepwise self-assembly in which spherical nanoparticles mature into an entangled fibrillary network.

7.
Sci Rep ; 12(1): 5524, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35365734

RESUMEN

Carbonation of alkali activated materials is one of the main deteriorations affecting their durability. However, current understanding of the structural alteration of these materials exposed to an environment inducing carbonation at the nano/micro scale remains limited. This study examined the evolution of phase assemblages of alkali activated slag mortars subjected to accelerated carbonation (1% CO2, 60% relative humidity, up to 28 day carbonation) using XRD, FTIR and 29Si, 27Al, and 23Na MAS NMR. Samples with three water to binder (w/b) ratios (0.35, 0.45, and 0.55) were investigated. The results show that the phase assemblages mainly consisted of C-A-S-H, a disordered remnant aluminosilicate binder, and a minor hydrotalcite as a secondary product. Upon carbonation, calcium carbonate is mainly formed as the vaterite polymorph, while no sodium carbonate is found after carbonation as commonly reported. Sodium acts primarily as a charge balancing ion without producing sodium carbonate as a final carbonation product in the 28-day carbonated materials. The C-A-S-H structure becomes more cross-linked due to the decalcification of this phase as evidenced by the appearance of Q4 groups, which replace the Q1 and Q2 groups as observed in the 29Si MAS NMR spectra, and the dominance of Al(IV) in 27Al MAS NMR. Especially, unlike cementitious materials, the influence of w/b ratio on the crystalline phase formation and structure of C-A-S-H in the alkali activated mortars before and after carbonation is limited.

8.
Angew Chem Int Ed Engl ; 60(45): 24189-24197, 2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34478216

RESUMEN

A cooperative OSDA strategy is demonstrated, leading to novel high-silica FAU zeolites with a large potential for disruptive acid catalysis. In bottom-up synthesis, the symbiosis of choline ion (Ch+ ) and 15-crown-5 (CE) was evidenced, in a form of full occupation of the sodalite (sod) cages with the trans Ch+ conformer, induced by the CE presence. CE itself occupied the supercages along with additional gauche Ch+ , but in synthesis without CE, no trans was found. The cooperation, and thus the fraction of trans Ch+ , was closely related to the Si/Al ratio, a key measure for FAU stability and acidity. As such, a bottom-up handle for lowering the Al-content of FAU and tuning its acid site distribution is shown. A mechanistic study demonstrated that forming sod cages with trans Ch+ is key to the nucleation of high-silica FAU zeolites. The materials showed superior performances to commercial FAU zeolites and those synthesized without cooperation, in the catalytic degradation of polyethylene.

9.
J Am Chem Soc ; 143(22): 8249-8254, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34043343

RESUMEN

Physisorption using gas or vapor probe molecules is the most common characterization technique for porous materials. The method provides textural information on the adsorbent as well as the affinity for a specific adsorbate, typically through equilibrium pressure measurements. Here, we demonstrate how low-field NMR can be used to measure full adsorption isotherms, and how by selectively measuring 1H spins of the adsorbed probe molecules, rather than those in the vapor phase, this "NMR-relaxorption" technique provides insights about local dynamics beyond what can be learned from physisorption alone. The potential of this double-barreled approach was illustrated for a set of microporous metal-organic frameworks (MOFs). For methanol adsorption in ZIF-8, the method identifies multiple guest molecules populations assigned to MeOH clusters in the pore center, MeOH bound at cage windows and to MeOH adsorption on defect sites. For UiO-66(Zr), the sequential pore filling is demonstrated and accurate pore topologies are directly obtained, and for MIL-53(Al), structural phase transitions are accurately detected and linked with two populations of dimeric chemical species localized to specific positions in the framework.

10.
Food Res Int ; 140: 110062, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33648285

RESUMEN

For the first time, a model system approach was combined with 1H NMR fingerprinting in studying non-enzymatic browning (NEB) of pasteurized shelf-stable orange juice during storage. Various NEB precursors were used individually or in combinations to formulate simple or complex model systems, respectively, in citric acid buffer. Based on orange juice composition, ascorbic acid, sugars (sucrose, glucose and fructose) and amino acids (proline, arginine, asparagine, aspartic acid, serine and glutamic acid) were selected as the precursors for the model systems. After pasteurization and during subsequent accelerated storage (42 °C, 16 weeks) the model systems displayed a three-phase browning development. The initial browning phase was mainly the result of ascorbic acid degradation especially in the presence of amino acids and sugars. In the later phases, the contribution of reactions of sugars and amino acids to browning became apparent. The application of 1H NMR fingerprinting on a simple model system containing ascorbic acid revealed that its degradation pathway to intermediates such as xylonic acid, acetic acid and erythrulose was responsible for the major changes during storage. When this model system was complexed by inclusion of sugars and amino acids, the hydrolysis of sucrose to glucose and fructose was identified as the main reaction leading to differences in the samples throughout storage. These three sugars dominated the NMR spectra of the samples, overshadowing several important compounds for NEB such as ascorbic acid and its degradation products. Other more advanced NMR experiments such as two-dimensional NMR analyses should be applied in future research to identify unknown compounds from NEB reactions.


Asunto(s)
Citrus sinensis , Ácido Ascórbico/análisis , Jugos de Frutas y Vegetales , Pasteurización , Espectroscopía de Protones por Resonancia Magnética
11.
J Magn Reson ; 322: 106871, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33423758

RESUMEN

This article was written in honor of Prof. Bernhard Blümich, who has heavily impacted many areas of Magnetic Resonance and, in particular, low-field and portable NMR with numerous advances, concepts, innovations, and applications of this impressive technology. Many years ago, we decided to research and develop single-sided magnets for the area of petroleum science and engineering to study oil reservoir rocks in the laboratory under well-logging conditions. The global urge to exploit oil reserves requires the analysis of reservoirs, intending to characterize the yields before starting the production. Thus, well-logging tools have been developed to estimate the quality of oil and reservoir productivity. NMR logging is included in these analytical tools, and numerous operations using this kind of device were performed since the early 1950s. To contribute to this vital research area, we show the development of a new benchtop single-sided NMR system, with well-logging tool characteristics, a cylindrical sweet spot with 4 cm of diameter and length, with magnetic field of 47 mT centered at 11 cm from the magnet's surface and a constant gradient of 35.7 G/cm along z. This system was used in self-diffusion, T1-T2, and D-T2 measurements of standard liquids and rock cores, demonstrating its functionality.

12.
Molecules ; 26(1)2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33375128

RESUMEN

The demand for more ecological, highly engineered hydrogel beads is driven by a multitude of applications such as enzyme immobilization, tissue engineering and superabsorbent materials. Despite great interest in hydrogel fabrication and utilization, the interaction of hydrogels with water is not fully understood. In this work, NMR relaxometry experiments were performed to study bead-water interactions, by probing the changes in bead morphology and surface energy resulting from the incorporation of carboxymethyl cellulose (CMC) into a cellulose matrix. The results show that CMC improves the swelling capacity of the beads, from 1.99 to 17.49, for pure cellulose beads and beads prepared with 30% CMC, respectively. Changes in water mobility and interaction energy were evaluated by NMR relaxometry. Our findings indicate a 2-fold effect arising from the CMC incorporation: bead/water interactions were enhanced by the addition of CMC, with minor additions having a greater effect on the surface energy parameter. At the same time, bead swelling was recorded, leading to a reduction in surface-bound water, enhancing water mobility inside the hydrogels. These findings suggest that topochemical engineering by adjusting the carboxymethyl cellulose content allows the tuning of water mobility and porosity in hybrid beads and potentially opens up new areas of application for this biomaterial.


Asunto(s)
Carboximetilcelulosa de Sodio/química , Celulosa/química , Ingeniería Química , Espectroscopía de Resonancia Magnética , Microesferas , Algoritmos , Ingeniería Química/métodos , Portadores de Fármacos/química , Hidrogeles/química , Espectroscopía de Resonancia Magnética/métodos , Modelos Químicos
13.
Angew Chem Int Ed Engl ; 58(51): 18471-18475, 2019 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-31593354

RESUMEN

Zeolitic imidazolate frameworks (ZIFs) are a sub-class of metal-organic frameworks (MOFs). Although generally stable, ZIFs can undergo post-synthetic linker exchange (PSLE) in solution under mild conditions. Herein, we present a novel, solvent-free approach to post-synthetic linker exchange through exposure to linker vapor.

14.
BMC Neurol ; 18(1): 186, 2018 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-30400884

RESUMEN

BACKGROUND: Little is known about whether tolerability and adherence to treatment can be influenced by weather and temperature conditions. The objective of this study was to assess monthly and seasonal adherence to and safety of sc IFN-ß1a (Rebif®, Merck) in relapsing-remitting multiple sclerosis (RRMS) patients using the RebiSmart® electronic autoinjector. METHODS: A multicentre, prospective observational study in Greece in adult RRMS patients with EDSS < 6, under Rebif®/RebiSmart® treatment for ≤6 weeks before enrollment. The primary endpoint was monthly, seasonal and annual adherence over 12 months (defined in text). Secondary endpoints included number of relapses, disability, adverse events. RESULTS: Sixty four patients enrolled and 47 completed all study visits (Per Protocol Set - PPS). Mean annual adherence was 97.93% ± 5.704 with no significant monthly or seasonal variations. Mean relapses in the pre- and post- treatment 12-months were 1.1 ± 0.47 and 0.2 ± 0.54 (p < 0.0001, PPS). 10 patients (22%) showed 3-month disability progression, 19 (40%) stabilization and 18 (38%) improvement. EDSS was not correlated to pre- (r = 0.024, p = 0.87) or post-treatment relapses (r = 0.022, p = 0.88). CONCLUSION: High adherence with no significant seasonal or weather variation was observed over 12 months. While the efficacy on relapses was consistent with published studies, we could not identify a relationship between relapses and disability. TRIAL REGISTRATION: Greek registry of non-interventional clinical trials ID: 200136 , date of registration: February 18th, 2013.


Asunto(s)
Interferón beta-1a/uso terapéutico , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Estaciones del Año , Adolescente , Adulto , Anciano , Personas con Discapacidad , Progresión de la Enfermedad , Femenino , Grecia , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Adulto Joven
15.
J Magn Reson ; 277: 143-148, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28285144

RESUMEN

We present designs for compact, inexpensive and strong dipole permanent magnets aimed primarily at magnetic resonance applications where prepolarization and detection occur at different locations. Low-homogeneity magnets with a 7.5mm bore size and field up to nearly 2T are constructed using low-cost starting materials, standard workshop tools and only few hours of labor - an achievable project for a student or postdoc with spare time. As an application example we show how our magnet was used to polarize the nuclear spins in approximately 1mL of pure [13C]-methanol prior to detection of its high-resolution NMR spectrum at zero field (measurement field below 10-10T), where signals appear at multiples of the carbon-hydrogen spin-spin coupling frequency 1JCH=140.7(1)Hz.

16.
J Magn Reson ; 277: 25-29, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28213048

RESUMEN

Many single-sided permanent magnet NMR systems have been proposed over the years allowing for 1D proton-density profiling, diffusion measurements and relaxometry. In this manuscript we make use of a recently published unilateral magnet for low-field NMR exhibiting an extremely uniform magnetic field gradient with moderate strength and cylindrical symmetry, allowing for a well-defined sweet spot. Combined with a goniometer, our system is used to characterize precisely the uniformity of its gradient and to achieve micrometric precision 1D profiling, as well as spatially localized relaxometry and diffusometry on thick (∼150µm) membrane samples. Profiling with this magnet did not require repositioning of the samples with respect to the 1D tomograph.

17.
Phys Chem Chem Phys ; 18(48): 33187-33194, 2016 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-27892567

RESUMEN

Nuclear magnetic resonance (NMR) is a ubiquitous branch of spectroscopy that can explore matter at the scale of an atom. Significant improvements in sensitivity and resolution have been driven by a steady increase of static magnetic field strengths. However, some properties of nuclei may be more favourable at low magnetic fields. For example, transverse relaxation due to chemical shift anisotropy increases sharply at higher magnetic fields leading to line-broadening and inefficient coherence transfers. Here, we present a two-field NMR spectrometer that permits the application of rf-pulses and acquisition of NMR signals in two magnetic centres. Our prototype operates at 14.1 T and 0.33 T. The main features of this system are demonstrated by novel NMR experiments, in particular a proof-of-concept correlation between zero-quantum coherences at low magnetic field and single quantum coherences at high magnetic field, so that high resolution can be achieved in both dimensions, despite a ca. 10 ppm inhomogeneity of the low-field centre. Two-field NMR spectroscopy offers the possibility to circumvent the limits of high magnetic fields, while benefiting from their exceptional sensitivity and resolution. This approach opens new avenues for NMR above 1 GHz.

18.
Sci Rep ; 6: 25938, 2016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-27185018

RESUMEN

The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules.

19.
Appl Magn Reson ; 47: 237-246, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26941480

RESUMEN

Nuclear magnetic relaxation dispersion (NMRD) profiles are essential tools to evaluate the efficiency and investigate the properties of magnetic compounds used as contrast agents for magnetic resonance imaging (MRI), namely gadolinium chelates and superparamagnetic iron oxide particles. These curves represent the evolution of proton relaxation rates with the magnetic field. NMRD profiles are unparalleled to probe extensively the spectral density function involved in the relaxation of water in the presence of the paramagnetic ion or the magnetic nanoparticles. This makes such profiles an excellent test of the adequacy of a theoretical relaxation model and allow for a predictive approach to the development and optimization of contrast agents. From a practical point of view they also allow to evaluate the efficiency of a contrast agent in a certain range of magnetic fields. Nowadays, these curves are recorded with commercial fast field cycling devices, often limited to a maximum Larmor frequency of 40 MHz (0.94 T). In this article, relaxation data were acquired on a wide range of magnetic fields, from 3.5 × 10-4 to 14 T, for a gadolinium-based contrast agent and for PEGylated iron oxide nanoparticles. We show that the low-field NMRD curves can be completed with high-field data obtained on a shuttle apparatus device using the superconductive magnet of a high-field spectrometer. This allows a better characterization of the contrast agents at relevant magnetic fields for clinical and preclinical MRI, but also refines the experimental data that could be used for the validation of relaxation models.

20.
Open Cardiovasc Med J ; 6: 141-6, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23230452

RESUMEN

INTRODUCTION: The epidemic proportions of overweight, obesity and diabetes in most European countries stress the need for the implementation of an effective action plan for the prevention of cardiovascular (CV) disease. This ques-tionnaire study was designed to evaluate the viewpoint of the general population regarding the relative significance of CV risk factors in the cumulative risk of CV disease. METHODS: All participants answered a questionnaire regarding the self-reported presence of CV disease risk factors and the perceived notion of having excess weight. They were also asked to list CV disease risk factors, ranking them in order of perceived relative significance. Participants were also subjected to total cholesterol measurement using a portable total cholesterol testing meter. RESULTS: The survey population consisted of 32,736 individuals (49.1% males). According to participant self reporting, 32.9% were smokers, 24.7% had hypertension, 9.8% had diabetes, 74.8% reported having stress, 41.9% had insufficient physical activity and 43.3% had hyperlipidemia. The prevalence of overweight was 43.9% and the prevalence of obesity (BMI ≥30 kg/m(2)) was 18.6%. Only 24.4% of participants reported that they had excess weight. The 45.2% of the ques-tioned individuals considered that stress was the most important CV risk factor. CONCLUSIONS: Despite the high prevalence of overweight and obesity, the majority of participants were unaware of the contribution of these well-established risk factors to the occurrence of CV disease. Improving public awareness is impor-tant in order to control the epidemic proportions of these modifiable risk factors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA