Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Biol ; 5: 44, 2007 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-17925023

RESUMEN

BACKGROUND: Molecular interaction Information is a key resource in modern biomedical research. Publicly available data have previously been provided in a broad array of diverse formats, making access to this very difficult. The publication and wide implementation of the Human Proteome Organisation Proteomics Standards Initiative Molecular Interactions (HUPO PSI-MI) format in 2004 was a major step towards the establishment of a single, unified format by which molecular interactions should be presented, but focused purely on protein-protein interactions. RESULTS: The HUPO-PSI has further developed the PSI-MI XML schema to enable the description of interactions between a wider range of molecular types, for example nucleic acids, chemical entities, and molecular complexes. Extensive details about each supported molecular interaction can now be captured, including the biological role of each molecule within that interaction, detailed description of interacting domains, and the kinetic parameters of the interaction. The format is supported by data management and analysis tools and has been adopted by major interaction data providers. Additionally, a simpler, tab-delimited format MITAB2.5 has been developed for the benefit of users who require only minimal information in an easy to access configuration. CONCLUSION: The PSI-MI XML2.5 and MITAB2.5 formats have been jointly developed by interaction data producers and providers from both the academic and commercial sector, and are already widely implemented and well supported by an active development community. PSI-MI XML2.5 enables the description of highly detailed molecular interaction data and facilitates data exchange between databases and users without loss of information. MITAB2.5 is a simpler format appropriate for fast Perl parsing or loading into Microsoft Excel.


Asunto(s)
Bases de Datos de Proteínas/normas , Procesamiento de Lenguaje Natural , Mapeo de Interacción de Proteínas/métodos , Proteómica/métodos , Biología Computacional , Gráficos por Computador , Sistemas de Administración de Bases de Datos , Proteómica/normas , Interfaz Usuario-Computador
2.
Nat Biotechnol ; 25(8): 894-8, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17687370

RESUMEN

A wealth of molecular interaction data is available in the literature, ranging from large-scale datasets to a single interaction confirmed by several different techniques. These data are all too often reported either as free text or in tables of variable format, and are often missing key pieces of information essential for a full understanding of the experiment. Here we propose MIMIx, the minimum information required for reporting a molecular interaction experiment. Adherence to these reporting guidelines will result in publications of increased clarity and usefulness to the scientific community and will support the rapid, systematic capture of molecular interaction data in public databases, thereby improving access to valuable interaction data.


Asunto(s)
Bases de Datos de Proteínas/normas , Guías como Asunto , Almacenamiento y Recuperación de la Información/normas , Mapeo de Interacción de Proteínas/normas , Proteómica/normas , Investigación/normas , Humanos , Internacionalidad
3.
BMC Bioinformatics ; 7: 152, 2006 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-16545112

RESUMEN

BACKGROUND: Accurate small molecule binding site information for a protein can facilitate studies in drug docking, drug discovery and function prediction, but small molecule binding site protein sequence annotation is sparse. The Small Molecule Interaction Database (SMID), a database of protein domain-small molecule interactions, was created using structural data from the Protein Data Bank (PDB). More importantly it provides a means to predict small molecule binding sites on proteins with a known or unknown structure and unlike prior approaches, removes large numbers of false positive hits arising from transitive alignment errors, non-biologically significant small molecules and crystallographic conditions that overpredict ion binding sites. DESCRIPTION: Using a set of co-crystallized protein-small molecule structures as a starting point, SMID interactions were generated by identifying protein domains that bind to small molecules, using NCBI's Reverse Position Specific BLAST (RPS-BLAST) algorithm. SMID records are available for viewing at http://smid.blueprint.org. The SMID-BLAST tool provides accurate transitive annotation of small-molecule binding sites for proteins not found in the PDB. Given a protein sequence, SMID-BLAST identifies domains using RPS-BLAST and then lists potential small molecule ligands based on SMID records, as well as their aligned binding sites. A heuristic ligand score is calculated based on E-value, ligand residue identity and domain entropy to assign a level of confidence to hits found. SMID-BLAST predictions were validated against a set of 793 experimental small molecule interactions from the PDB, of which 472 (60%) of predicted interactions identically matched the experimental small molecule and of these, 344 had greater than 80% of the binding site residues correctly identified. Further, we estimate that 45% of predictions which were not observed in the PDB validation set may be true positives. CONCLUSION: By focusing on protein domain-small molecule interactions, SMID is able to cluster similar interactions and detect subtle binding patterns that would not otherwise be obvious. Using SMID-BLAST, small molecule targets can be predicted for any protein sequence, with the only limitation being that the small molecule must exist in the PDB. Validation results and specific examples within illustrate that SMID-BLAST has a high degree of accuracy in terms of predicting both the small molecule ligand and binding site residue positions for a query protein.


Asunto(s)
Bases de Datos de Proteínas , Documentación/métodos , Almacenamiento y Recuperación de la Información/métodos , Mapeo de Interacción de Proteínas/métodos , Proteínas/química , Proteínas/clasificación , Análisis de Secuencia de Proteína/métodos , Sitios de Unión , Sistemas de Administración de Bases de Datos , Ligandos , Unión Proteica , Alineación de Secuencia/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA