Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
ACS Phys Chem Au ; 4(5): 476-489, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39364351

RESUMEN

Lead-free double perovskites (DPs) will emerge as viable and environmentally safe substitutes for Pb-halide perovskites, demonstrating stability and nontoxicity if their optoelectronic property is greatly improved. Doping has been experimentally validated as a powerful tool for enhancing optoelectronic properties and concurrently reducing the defect state density in DP materials. Fundamental understanding of the optical properties of DPs, particularly the self-trapped exciton (STEs) dynamics, plays a critical role in a range of optoelectronic applications. Our study investigates how Fe doping influences the structural and optical properties of Cs2AgBiCl6 DPs by understanding their STEs dynamics, which is currently lacking in the literature. A combined experimental-computational approach is employed to investigate the optoelectronic properties of pure and doped Cs2AgBiCl6 (Fe-Cs2AgBiCl6) perovskites. Successful incorporation of Fe3+ ions is confirmed by X-ray diffraction and Raman spectroscopy. Moreover, the Fe-Cs2AgBiCl6 DPs exhibit strong absorption from below 400 nm up to 700 nm, indicating sub-band gap state transitions originating from surface defects. Photoluminescence (PL) analysis demonstrates a significant enhancement in the PL intensity, attributed to an increased radiative recombination rate and higher STE density. The radiative kinetics and average lifetime are investigated by the time-resolved PL (TRPL) method; in addition, temperature-dependent PL measurements provide valuable insights into activation energy and exciton-phonon coupling strength. Our findings will not only deepen our understanding of charge carrier dynamics associated with STEs but also pave the way for the design of some promising perovskite materials for use in optoelectronics and photocatalysis.

2.
Phys Chem Chem Phys ; 25(33): 22040-22054, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37555468

RESUMEN

The present work demonstrates the effect of temperature-dependent surface modification (SM) treatment and its influence in broadening the catalysis regime with Pd-TiO2 catalysts prepared by various methods. Due to SM induced changes, a shift in the onset of CO oxidation activity as well as broadening of the oxidation catalysis regime by 30 to 65 K to lower temperatures is observed compared to the temperature required for virgin counterparts. SM carried out at 523 K for PdPhoto-TiO2 exhibits the lowest onset (10% CO2 production - T10) and T100 for CO oxidation at 360 and 392 K, respectively, while its virgin counterpart shows T10 and T100 at 393 and 433 K, respectively. The SMd Pd-TiO2 catalysts were investigated using X-ray photoelectron spectroscopy (XPS), ultra-violet photoelectron spectroscopy (UPS) and atomic force microscopy (AFM). It is observed that diffusion of atomic oxygen into Pd-subsurfaces leads to SM and changes the nature of the surface significantly. These changes are demonstrated by work function (ϕ), surface potential, catalytic activity, and correlation among them. UPS results demonstrate the maximum increase in ϕ by 0.5 eV for PdPhoto-TiO2 after SM, compared to all other catalysts. XPS study shows a moderate to severe change in the oxidation states of Pd due to atomic oxygen diffusion into the subsurface layers of Pd. Kelvin probe force microscopy (KPFM) study also reveals corroborating evidence that the surface potential increases linearly with increasing temperature deployed for SM up to 523 K, followed by a marginal decrease at 573 K. The ϕ measured by KPFM and UPS shows a similar trend and correlates well with the changes in catalysis observed. Our results indicate that there is a strong correlation between surface physical and chemical properties, and ϕ changes could be considered as a global marker for chemical reactivity.

3.
Chem Asian J ; 18(6): e202201239, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36716268

RESUMEN

The present study reports on the photocatalytic oxidation of butanols to butanal/butanone using thin film form of facet-dependent nano-Pd supported on commercial TiO2 under one-sun condition and demonstrates the generic nature. Pd-nanocube (PdNC (100)), Pd-truncated octahedron (PdTO (100) and (111)), polycrystalline (PdPC ), and their counterparts with half-a-monolayer Pt-coated on Pd (0.5θPt -Pd)) have been used as co-catalyst. A potentially scalable thin film form of Pd/TiO2 photocatalyst, prepared by drop-casting method, has been employed to study oxidation of n-butanol, 2-butanol, and iso-butanol to corresponding aldehyde/ketone. 100% selectivity is demonstrated to respective aldehyde/ketone with any catalyst used in the present study with varying degree of butanols conversion by NMR. 0.5θPt -PdTO /TiO2 shows the highest conversion of 2-butanol to butanone (13.6% in 4 h). Continuous 10 h of reaction with the most active 0.5θPt -PdTO /P25 catalyst demonstrates 31% conversion of 2-butanol to butanone, and catalyst recyclability has been demonstrated. The present protocol can be scalable to large scales to maximize the conversion in direct sunlight. Due to its generic nature, the current method can also be applied to many other alcohols and substrate molecules.

4.
Dalton Trans ; 52(7): 2051-2061, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36692075

RESUMEN

The co-production of hydrogen and chlorine from sea-water splitting could be a potential, sustainable and attractive route by any method. However, challenges to overcome are many, and critically, the sustainability and operating potential of the electrocatalyst are important. In this work, we report on Co-doping in the BiVO4 (Co-BV) crystal lattice and employed the same as the photoanode; Co-BV exhibits a photocurrent of 190 µA cm-2 at 1.1 V vs. RHE (the reversible hydrogen electrode) in the acidic sodium chloride solution (pH 2.3) under one sun illumination. The best-performing photoanode, with 0.05 mol% of Co doping (0.05 Co-BV), selectively produced active chlorine with 92% faradaic efficiency at 1.1 V vs. RHE by successfully suppressing the kinetically sluggish oxygen evolution reaction (OER) and the stability of the catalyst was demonstrated for up to 20 h. This is the lowest operating potential reported for the chlorine evolution reaction (CER), thus far. The overpotential required for CER with 0.05 Co-BV is lower than that of OER, which leads to selective CER at 1.1 V (vs. RHE). Co-doping into the BiVO4 lattice decreases the charge transfer resistance and enhances the CER kinetics due to its structural and electronic integration with the BV lattice. We demonstrate that Co-doping also improves the lifetime of the charge carrier and enhances the current density of CER and sustainability of the catalyst.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA