Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
PLoS Negl Trop Dis ; 18(9): e0012518, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39331692

RESUMEN

Environmental surveillance for Salmonella Typhi may provide information on the community-level dynamics of typhoid fever in resource poor regions experiencing high disease burden. Many knowledge gaps concerning the feasibility of ES remain, especially in areas lacking formal sewage systems. We implemented protocols for S. Typhi ES, including site selection and catchment population estimation, sample concentration and testing using qPCR for S. Typhi specific gene targets. Between May 2021 and May 2022, we collected grab samples and Moore swabs from 43 sites in Blantyre, Malawi. Catchment characteristics, water quality, and human faecal contamination (qPCR for Bacteroides HF183) were also recorded. Their association with S. Typhi detection was investigated using a logistic mixed-effects regression analysis. Prevalence of S. Typhi in ES samples was 2.1% (1.1-4.0%) and 3.9% (1.9-7.9%) for grab and Moore swab samples, respectively. HF183 was associated S. Typhi positivity, with a unit increase in log genome copies/microlitre increasing the odds of detection of S. Typhi by 1.56 (95% CI: 1.29-1.89) and 1.33 (1.10-1.61) in Moore swabs and grab samples, respectively. The location and timing of S. Typhi detection through ES was not associated with the incidence of typhoid fever reported in associated catchment populations. During this period of relatively low typhoid fever incidence, wastewater surveillance continued to detect S. Typhi in human sewage and wastewater suggesting that ES using natural river systems can be a sensitive indicator of transmission.


Asunto(s)
Monitoreo del Ambiente , Ríos , Salmonella typhi , Aguas del Alcantarillado , Fiebre Tifoidea , Aguas Residuales , Malaui/epidemiología , Humanos , Salmonella typhi/aislamiento & purificación , Salmonella typhi/genética , Aguas Residuales/microbiología , Ríos/microbiología , Aguas del Alcantarillado/microbiología , Monitoreo del Ambiente/métodos , Fiebre Tifoidea/epidemiología , Fiebre Tifoidea/microbiología
2.
One Health ; 19: 100848, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39211934

RESUMEN

Salmonella was isolated from 23/79 (29.1%) pooled gecko stool samples from households in southern Malawi. Whole genome sequencing of 47 individual isolates within this collection revealed 27 Salmonella serovars spanning two subspecies. Our results demonstrate that geckos play an important role in the carriage of Salmonella within households.

3.
Lancet Microbe ; 4(7): e534-e543, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37207684

RESUMEN

BACKGROUND: Low-income countries have high morbidity and mortality from drug-resistant infections, especially from enteric bacteria such as Escherichia coli. In these settings, sanitation infrastructure is of variable and often inadequate quality, creating risks of extended-spectrum ß-lactamase (ESBL)-producing Enterobacterales transmission. We aimed to describe the prevalence, distribution, and risks of ESBL-producing Enterobacterales colonisation in sub-Saharan Africa using a One Health approach. METHODS: Between April 29, 2019, and Dec 3, 2020, we recruited 300 households in Malawi for this longitudinal cohort study: 100 each in urban, peri-urban, and rural settings. All households underwent a baseline visit and 195 were selected for longitudinal follow-up, comprising up to three additional visits over a 6 month period. Data on human health, antibiotic usage, health-seeking behaviours, structural and behavioural environmental health practices, and animal husbandry were captured alongside human, animal, and environmental samples. Microbiological processing determined the presence of ESBL-producing E coli and Klebsiella pneumoniae, and hierarchical logistic regression was performed to evaluate the risks of human ESBL-producing Enterobacterales colonisation. FINDINGS: A paucity of environmental health infrastructure and materials for safe sanitation was identified across all sites. A total of 11 975 samples were cultured, and ESBL-producing Enterobacterales were isolated from 1190 (41·8%) of 2845 samples of human stool, 290 (29·8%) of 973 samples of animal stool, 339 (66·2%) of 512 samples of river water, and 138 (46·0%) of 300 samples of drain water. Multivariable models illustrated that human ESBL-producing E coli colonisation was associated with the wet season (adjusted odds ratio 1·66, 95% credible interval 1·38-2·00), living in urban areas (2·01, 1·26-3·24), advanced age (1·14, 1·05-1·25), and living in households where animals were observed interacting with food (1·62, 1·17-2·28) or kept inside (1·58, 1·00-2·43). Human ESBL-producing K pneumoniae colonisation was associated with the wet season (2·12, 1·63-2·76). INTERPRETATION: There are extremely high levels of ESBL-producing Enterobacterales colonisation in humans and animals and extensive contamination of the wider environment in southern Malawi. Urbanisation and seasonality are key risks for ESBL-producing Enterobacterales colonisation, probably reflecting environmental drivers. Without adequate efforts to improve environmental health, ESBL-producing Enterobacterales transmission is likely to persist in this setting. FUNDING: Medical Research Council, National Institute for Health and Care Research, and Wellcome Trust. TRANSLATION: For the Chichewa translation of the abstract see Supplementary Materials section.


Asunto(s)
Antiinfecciosos , Infecciones por Escherichia coli , Infecciones por Klebsiella , Salud Única , Animales , Humanos , Escherichia coli , Klebsiella pneumoniae , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/microbiología , Estudios Longitudinales , beta-Lactamasas , Infecciones por Klebsiella/epidemiología , Infecciones por Klebsiella/microbiología , Estudios de Cohortes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA