RESUMEN
ABSTRACT: Introduction: Sepsis-induced degradation of endothelial glycocalyx heparan sulfate (HS) contributes to the pulmonary microvascular endothelial injury characteristic of acute respiratory distress syndrome (ARDS) pathogenesis. Our objectives were to (1) examine relationships between plasma indices of HS degradation and protein biomarkers of endothelial injury and (2) identify patient subgroups characterized by distinct profiles of HS degradation in children with ARDS. Methods: We analyzed prospectively collected plasma (2018-2020) from a cohort of invasively mechanically ventilated children (aged >1 month to <18 years) with ARDS. Mass spectrometry characterized and quantified patterns of HS disaccharide sulfation. Protein biomarkers reflective of endothelial injury (e.g., angiopoietin-2, vascular cell adhesion molecule-1, soluble thrombomodulin) were measured with a multiplex immunoassay. Pearson correlation coefficients were used to construct a biomarker correlation network. Centrality metrics detected influential biomarkers (i.e., network hubs). K-means clustering identified unique patient subgroups based on HS disaccharide profiles. Results: We evaluated 36 patients with pediatric ARDS. HS disaccharide sulfation patterns, 6S, NS, and NS2S, positively correlated with all biomarkers of endothelial injury (all P < 0.05) and were classified as network hubs. We identified three patient subgroups, with cluster 3 (n = 5) demonstrating elevated levels of 6S and N-sulfated HS disaccharides. In cluster 3, 60% of children were female and nonpulmonary sepsis accounted for 60% of cases. Relative to cluster 1 (n = 12), cluster 3 was associated with higher oxygen saturation index (P = 0.029) and fewer 28-day ventilator-free days (P = 0.016). Conclusions: Circulating highly sulfated HS fragments may represent emerging mechanistic biomarkers of endothelial injury and disease severity in pediatric ARDS.
Asunto(s)
Biomarcadores , Heparitina Sulfato , Síndrome de Dificultad Respiratoria , Humanos , Heparitina Sulfato/sangre , Síndrome de Dificultad Respiratoria/sangre , Niño , Preescolar , Femenino , Masculino , Biomarcadores/sangre , Lactante , Adolescente , Estudios Prospectivos , Angiopoyetina 2/sangreRESUMEN
OBJECTIVES: To characterize immunocompromised-associated pediatric acute respiratory distress syndrome (I-PARDS) and contrast it to PARDS. DESIGN: This is a secondary analysis of the 2016-2017 PARDS incidence and epidemiology (PARDIE) study, a prospective observational, cross-sectional study of children with PARDS. SETTING: Dataset of 145 PICUs across 27 countries. PATIENTS: During 10 nonconsecutive weeks (from May 2016 to June 2017), data about immunocompromising conditions (ICCs, defined as malignancy, congenital/acquired immunodeficiency, posttransplantation, or diseases requiring immunosuppression) were collected. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Of 708 subjects, 105 (14.8%) had ICC. Before the development of I-PARDS, those with ICC were more likely to be hospitalized (70% vs. 35%, p < 0.001), have more at-risk for PARDS ( p = 0.046), and spent more hours at-risk (20 [interquartile range, IQR: 8-46] vs. 11 [IQR: 4-33], [ p = 0.002]). Noninvasive ventilation (NIV) use was more common in those with ICC ( p < 0.001). Of those diagnosed with PARDS on NIV ( n = 161), children with ICC were more likely to be subsequently intubated ( n = 28/40 [70%] vs n = 53/121 [44%], p = 0.004). Severe PARDS was more common (32% vs 23%, p < 0.001) in I-PARDS. Oxygenation indices were higher at diagnosis and had less improvement over the first 3 days of PARDS ( p < 0.001). Children with I-PARDS had greater nonpulmonary organ dysfunction. Adjusting for Pediatric Risk of Mortality IV and oxygenation index, children with I-PARDS had a higher severity of illness-adjusted PICU mortality (adjusted hazard ratio: 3.0 [95% CI, 1.9-4.7] p < 0.001) and were less likely to be extubated alive within 28 days (subdistribution hazard ratio: 0.47 [95% CI, 0.31-0.71] p < 0.001). CONCLUSIONS: I-PARDS is a unique subtype of PARDS associated with hospitalization before diagnosis and increased: time at-risk for PARDS, NIV use, hypoxia, nonpulmonary organ dysfunction, and mortality. The opportunity for early detection and intervention seems to exist. Dedicated study in these patients is imperative to determine if targeted interventions will benefit these unique patients with the ultimate goal of improving outcomes.
Asunto(s)
Insuficiencia Multiorgánica , Síndrome de Dificultad Respiratoria , Niño , Humanos , Estudios Prospectivos , Incidencia , Estudios Transversales , Respiración Artificial/efectos adversosRESUMEN
BACKGROUND: Sepsis-associated destruction of the pulmonary microvascular endothelial glycocalyx (EGCX) creates a vulnerable endothelial surface, contributing to the development of acute respiratory distress syndrome (ARDS). Constituents of the EGCX shed into circulation, glycosaminoglycans and proteoglycans, may serve as biomarkers of endothelial dysfunction. We sought to define the patterns of plasma EGCX degradation products in children with sepsis-associated pediatric ARDS (PARDS), and test their association with clinical outcomes. METHODS: We retrospectively analyzed a prospective cohort (2018-2020) of children (≥1 month to <18 years of age) receiving invasive mechanical ventilation for acute respiratory failure for ≥72â h. Children with and without sepsis-associated PARDS were selected from the parent cohort and compared. Blood was collected at time of enrollment. Plasma glycosaminoglycan disaccharide class (heparan sulfate, chondroitin sulfate, and hyaluronan) and sulfation subtypes (heparan sulfate and chondroitin sulfate) were quantified using liquid chromatography tandem mass spectrometry. Plasma proteoglycans (syndecan-1) were measured through an immunoassay. RESULTS: Among the 39 mechanically ventilated children (29 with and 10 without sepsis-associated PARDS), sepsis-associated PARDS patients demonstrated higher levels of heparan sulfate (median 639â ng/mL [interquartile range, IQR 421-902] vs 311 [IQR 228-461]) and syndecan-1 (median 146â ng/mL [IQR 32-315] vs 8 [IQR 8-50]), both p = 0.01. Heparan sulfate subtype analysis demonstrated greater proportions of N-sulfated disaccharide levels among children with sepsis-associated PARDS (p = 0.01). Increasing N-sulfated disaccharide levels by quartile were associated with severe PARDS (n = 9/29) with the highest quartile including >60% of the severe PARDS patients (test for trend, p = 0.04). Higher total heparan sulfate and N-sulfated disaccharide levels were independently associated with fewer 28-day ventilator-free days in children with sepsis-associated PARDS (all p < 0.05). CONCLUSIONS: Children with sepsis-associated PARDS exhibited higher plasma levels of heparan sulfate disaccharides and syndecan-1, suggesting that EGCX degradation biomarkers may provide insights into endothelial dysfunction and PARDS pathobiology.
Asunto(s)
Síndrome de Dificultad Respiratoria , Sepsis , Humanos , Niño , Estudios Retrospectivos , Sindecano-1/metabolismo , Sulfatos de Condroitina/metabolismo , Estudios Prospectivos , Glicocálix/química , Glicocálix/metabolismo , Sepsis/complicaciones , Sepsis/metabolismo , Heparitina Sulfato/metabolismo , Biomarcadores , Proteoglicanos/metabolismo , Disacáridos/metabolismoRESUMEN
OBJECTIVES: Describe the frequency with which transfusion and medications that modulate lung injury are administered to children meeting at-risk for pediatric acute respiratory distress syndrome (ARF-PARDS) criteria and evaluate for associations of transfusion, fluid balance, nutrition, and medications with unfavorable clinical outcomes. DESIGN: Secondary analysis of the Pediatric Acute Respiratory Distress Syndrome Incidence and Epidemiology study, a prospective point prevalence study. All enrolled ARF-PARDS patients were included unless they developed subsequent pediatric acute respiratory distress syndrome (PARDS) within 24 hours of PICU admission or PICU length of stay was less than 24 hours. Univariate and multivariable analyses were used to identify associations between therapies given during the first 2 calendar days after ARF-PARDS diagnosis and subsequent PARDS diagnosis (primary outcome), 28-day PICU-free days (PFDs), and 28-day ventilator-free days (VFDs). SETTING: Thirty-seven international PICUs. PATIENTS: Two hundred sixty-seven children meeting Pediatric Acute Lung Injury Consensus Conference ARF-PARDS criteria. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: During the first 2 days after meeting ARF-PARDS criteria, 55% of subjects received beta-agonists, 42% received corticosteroids, 28% received diuretics, and 9% were transfused. Subsequent PARDS (15%) was associated with platelet transfusion (n = 11; adjusted odds ratio: 4.75 [95% CI 1.03-21.92]) and diuretics (n = 74; 2.55 [1.19-5.46]) in multivariable analyses that adjusted for comorbidities, PARDS risk factor, initial oxygen saturation by pulse oximetry:Fio2 ratio, and initial type of ventilation. Beta-agonists were associated with lower adjusted odds of subsequent PARDS (0.43 [0.19-0.98]). Platelets and diuretics were also associated with fewer PFDs and fewer VFDs in the multivariable models, and TPN was associated with fewer PFDs. Corticosteroids, net fluid balance, and volume of enteral feeding were not associated with the primary or secondary outcomes. CONCLUSIONS: There is an independent association between platelet transfusion, diuretic administration, and unfavorable outcomes in children at risk for PARDS, although this may be related to treatment bias and unmeasured confounders. Nevertheless, prospective evaluation of the role of these management strategies on outcomes in children with ARF-PARDS is needed.
Asunto(s)
Respiración Artificial , Síndrome de Dificultad Respiratoria , Niño , Humanos , Incidencia , Respiración Artificial/efectos adversos , Factores de Riesgo , Síndrome de Dificultad Respiratoria/epidemiología , Síndrome de Dificultad Respiratoria/terapia , Síndrome de Dificultad Respiratoria/diagnóstico , Diuréticos/uso terapéutico , Unidades de Cuidado Intensivo PediátricoRESUMEN
OBJECTIVES: To evaluate the associations between early cumulative fluid balance (CFB) and outcomes among critically ill pediatric allogeneic hematopoietic cell transplant (HCT) recipients with acute respiratory failure, and determine if these associations vary by treatment with renal replacement therapy (RRT). METHODS: We performed a secondary analysis of a multicenter retrospective cohort of patients (1mo - 21yrs) post-allogeneic HCT with acute respiratory failure treated with invasive mechanical ventilation (IMV) from 2009 to 2014. Fluid intake and output were measured daily for the first week of IMV (day 0 = day of intubation). The exposure, day 3 CFB (CFB from day 0 through day 3 of IMV), was calculated using the equation [Fluid in - Fluid out] (liters)/[PICU admission weight](kg)*100. We measured the association between day 3 CFB and PICU mortality with logistic regression, and the rate of extubation at 28 and 60 days with competing risk regression (PICU mortality = competing risk). RESULTS: 198 patients were included in the study. Mean % CFB for the cohort was positive on day 0 of IMV, and increased further on days 1-7 of IMV. For each 1% increase in day 3 CFB, the odds of PICU mortality were 3% higher (adjusted odds ratio (aOR) 1.03, 95% CI 1.00-1.07), and the rate of extubation was 3% lower at 28 days (adjusted subdistribution hazard ratio (aSHR) 0.97, 95% CI 0.95-0.98) and 3% lower at 60 days (aSHR 0.97, 95% CI 0.95-0.98). When day 3 CFB was dichotomized, 161 (81%) had positive and 37 (19%) had negative day 3 CFB. Positive day 3 CFB was associated with higher PICU mortality (aOR 3.42, 95% CI 1.48-7.87) and a lower rate of extubation at 28 days (aSHR 0.30, 95% CI 0.18-0.48) and 60 days (aSHR 0.30, 95% 0.19-0.48). On stratified analysis, the association between positive day 3 CFB and PICU mortality was significantly stronger in those not treated with RRT (no RRT: aOR 9.11, 95% CI 2.29-36.22; RRT: aOR 1.40, 95% CI 0.42-4.74). CONCLUSIONS: Among critically ill pediatric allogeneic HCT recipients with acute respiratory failure, positive and increasing early CFB were independently associated with adverse outcomes.