Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Brain Sci ; 12(8)2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36009170

RESUMEN

Many studies have focused on navigation, spatial skills, and the olfactory system in comparative models, including those concerning the relationship between them and physical activity. Although the results are often in contrast with each other, it is assumed that physical activity can affect cognition in different ways-both indirectly and through a certain influence on some brain structures. In contrast, there is little research that focuses on the relationship between spatial abilities and olfactory abilities in humans. This research aimed to evaluate and compare the performance in working memory tasks of athletes and non-athletes who require good visual-spatial navigation, olfactory-spatial navigation, and olfactory-semantic skills. The study involved 236 participants (83 athletes) between the ages of 18 and 40. All subjects were matched by age or sex. The standard Corsi Block Tapping Test (CBTT) was administrated to investigate the visual-spatial memory. Olfactory-spatial navigation and olfactory-semantic skills were assessed with two modified versions of CBTT: Olfactory CBTT (OCBTT) and Semantic-Olfactory CBTT (SOCBTT) respectively. The results show differences between the CORSI conditions in direction of a poor performance for athletes. A gender effect in favor of men was also found, particularly in the classic version of the CBTT. Both groups performed better in the classic version of the CBTT than OCBTT and SOCBTT. The mean of SOCBTT results is markedly lower, perhaps due to the different information processing systems needed to perform this kind of task. It is possible to explain how sports practice can affect tasks that require spatial skills and olfactory perception differently, thus supporting new hypotheses and opening new scientific horizons.

2.
Front Cell Dev Biol ; 10: 782722, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35342743

RESUMEN

In vertebrates, the four transcription factors Sox2, c-Myc, Pou5f1 and Klf4 are involved in the differentiation of several tissues during vertebrate embryogenesis; moreover, they are normally co-expressed in embryonic stem cells and play roles in pluripotency, self-renewal, and maintenance of the undifferentiated state in adult cells. The in vitro forced co-expression of these factors, named Yamanaka factors (YFs), induces pluripotency in human or mouse fibroblasts. Botryllus schlosseri is a colonial tunicate undergoing continuous stem cell-mediated asexual development, providing a valuable model system for the study of pluripotency in the closest living relatives of vertebrates. In this study, we identified B. schlosseri orthologs of human Sox2 and c-Myc genes, as well as the closest homologs of the vertebrate-specific Pou5f1 gene, through an in-depth evolutionary analysis of the YF gene families in tunicates and other deuterostomes. Then, we studied the expression of these genes during the asexual cycle of B. schlosseri using in situ hybridization in order to investigate their possible involvement in tissue differentiation and in pluripotency maintenance. Our results show a shared spatio-temporal expression pattern consistent with the reported functions of these genes in invertebrate and vertebrate embryogenesis. Moreover, Myc, SoxB1 and Pou3 were expressed in candidate stem cells residing in their niches, while Pou2 was found expressed exclusively in the immature previtellogenic oocytes, both in gonads and circulating in the colonial vascular system. Our data suggest that Myc, SoxB1 and Pou3 may be individually involved in the differentiation of the same territories seen in other chordates, and that, together, they may play a role in stemness even in this colonial ascidian.

3.
Dev Growth Differ ; 64(3): 120-137, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35048372

RESUMEN

Wnt signaling is essential during animal development and regeneration, but also plays an important role in diseases such as cancer and diabetes. The canonical Wnt signaling pathway is one of the most conserved signaling cascades in the animal kingdom, with the T-cell factor/lymphoid enhancer factor (TCF/LEF) proteins being the major mediators of Wnt/ß-catenin-regulated gene expression. In comparison with invertebrates, vertebrates possess a high diversity of TCF/LEF family genes, implicating this as a possible key change to Wnt signaling at the evolutionary origin of vertebrates. However, the precise nature of this diversification is only poorly understood. The aim of this study is to clarify orthology, paralogy, and isoform relationships within the TCF/LEF gene family within chordates via in silico comparative study of TCF/LEF gene structure, molecular phylogeny, and gene synteny. Our results support the notion that the four TCF/LEF paralog subfamilies in jawed vertebrates (gnathostomes) evolved via the two rounds of whole-genome duplications that occurred during early vertebrate evolution. Importantly, gene structure comparisons and synteny analysis of jawless vertebrate (cyclostome) TCFs suggest that a TCF7L2-like form of gene structure is a close proxy for the ancestral vertebrate structure. In conclusion, we propose a detailed evolutionary path based on a new pre-whole-genome duplication vertebrate TCF gene model. This ancestor gene model highlights the chordate and vertebrate innovations of TCF/LEF gene structure, providing the foundation for understanding the role of Wnt/ß-catenin signaling in vertebrate evolution.


Asunto(s)
Cordados , Vía de Señalización Wnt , Animales , Cordados/metabolismo , Factor de Unión 1 al Potenciador Linfoide/genética , Vertebrados/genética , Vertebrados/metabolismo , Vía de Señalización Wnt/genética , beta Catenina/genética
4.
Cells ; 10(12)2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34944070

RESUMEN

Aquaporins (AQPs) are a family of membrane channels facilitating diffusion of water and small solutes into and out of cells. Despite their biological relevance in osmoregulation and ubiquitous distribution throughout metazoans, the presence of AQPs in annelids has been poorly investigated. Here, we searched and annotated Aqp sequences in public genomes and transcriptomes of annelids, inferred their evolutionary relationships through phylogenetic analyses and discussed their putative physiological relevance. We identified a total of 401 Aqp sequences in 27 annelid species, including 367 sequences previously unrecognized as Aqps. Similar to vertebrates, phylogenetic tree reconstructions clustered these annelid Aqps in four clades: AQP1-like, AQP3-like, AQP8-like and AQP11-like. We found no clear indication of the existence of paralogs exclusive to annelids; however, several gene duplications seem to have occurred in the ancestors of some Sedentaria annelid families, mainly in the AQP1-like clade. Three of the six Aqps annotated in Alitta succinea, an estuarine annelid showing high salinity tolerance, were validated by RT-PCR sequencing, and their similarity to human AQPs was investigated at the level of "key" conserved residues and predicted three-dimensional structure. Our results suggest a diversification of the structures and functions of AQPs in Annelida comparable to that observed in other taxa.


Asunto(s)
Anélidos/genética , Acuaporinas/genética , Evolución Molecular , Secuencia de Aminoácidos , Animales , Acuaporinas/química , Humanos , Modelos Moleculares , Anotación de Secuencia Molecular , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcriptoma/genética
5.
Sci Rep ; 11(1): 4078, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33603059

RESUMEN

Botryllids are colonial ascidians widely studied for their potential invasiveness and as model organisms, however the morphological description and discrimination of these species is very problematic, leading to frequent specimen misidentifications. To facilitate species discrimination and detection of cryptic/new species, we developed new barcoding primers for the amplification of a COI fragment of about 860 bp (860-COI), which is an extension of the common Folmer's barcode region. Our 860-COI was successfully amplified in 177 worldwide-sampled botryllid colonies. Combined with morphological analyses, 860-COI allowed not only discriminating known species, but also identifying undescribed and cryptic species, resurrecting old species currently in synonymy, and proposing the assignment of clade D of the model organism Botryllus schlosseri to Botryllus renierii. Importantly, within clade A of B. schlosseri, 860-COI recognized at least two candidate species against only one recognized by the Folmer's fragment, underlining the need of further genetic investigations on this clade. This result also suggests that the 860-COI could have a greater ability to diagnose cryptic/new species than the Folmer's fragment at very short evolutionary distances, such as those observed within clade A. Finally, our new primers simplify the amplification of 860-COI even in non-botryllid ascidians, suggesting their wider usefulness in ascidians.


Asunto(s)
Código de Barras del ADN Taxonómico/métodos , Complejo IV de Transporte de Electrones/genética , Urocordados/genética , Animales , ADN/genética , Cartilla de ADN/genética , Filogenia , Análisis de Secuencia de ADN , Urocordados/clasificación
6.
J Nat Prod ; 82(2): 211-220, 2019 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-30735391

RESUMEN

In order to accelerate the isolation and characterization of structurally new or novel secondary metabolites, it is crucial to develop efficient strategies that prioritize samples with greatest promise early in the workflow so that resources can be utilized in a more efficient and cost-effective manner. We have developed a metrics-based prioritization approach using exact LC-HRMS, which uses data for 24 618 marine natural products held in the PharmaSea database. Each sample was evaluated and allocated a metric score by a software algorithm based on the ratio of new masses over the total (sample novelty), ratio of known masses over the total (chemical novelty), number of peaks above a defined peak area threshold (sample complexity), and peak area (sample diversity). Samples were then ranked and prioritized based on these metric scores. To validate the approach, eight marine sponges and six tunicate samples collected from the Fiji Islands were analyzed, metric scores calculated, and samples targeted for isolation and characterization of new compounds. Structures of new compounds were elucidated by spectroscopic techniques, including 1D and 2D NMR, MS, and MS/MS. Structures were confirmed by computer-assisted structure elucidation methods (CASE) using the ACD/Structure Elucidator Suite.


Asunto(s)
Productos Biológicos/aislamiento & purificación , Cromatografía Liquida/métodos , Descubrimiento de Drogas/métodos , Espectrometría de Masas/métodos , Poríferos/química , Urocordados/química , Animales , Bases de Datos Factuales , Espectroscopía de Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA