RESUMEN
Disintegrins are a class of peptides found in snake venom that inhibit the activity of integrins, which are essential cell adhesion receptors in tumor progression and development. In this work, moojecin, a RGD disintegrin, was isolated from Bothrops moojeni snake venom, and its antitumor potential in acute myeloid leukemia (AML) HL-60 and THP-1 cells was characterized. The isolation was performed using a C18 reverse-phase column in two chromatographic steps, and its molecular mass is 7417.84 Da. N-terminal and de novo sequencing was performed to identify moojecin. Moojecin did not show cytotoxic or antiproliferative activity in THP-1 and HL-60 at tested concentrations, but it exhibited significant antimigratory activity in both cell lines, as well as inhibition of angiogenesis in the tube formation assay on Matrigel in a dose-dependent manner. A stronger interaction with integrin αVß3 was shown in integrin interaction assays compared to α5ß1, and the platelet aggregation assay indicated an IC50 of 5.039 µg/mL. Preliminary evaluation of disintegrin toxicity revealed no incidence of hemolysis or cytotoxic effects on peripheral blood mononuclear cells (PBMCs) across the tested concentrations. Thus, this is the first study to report the isolation, functional and structural characterization of a disintegrin from B. moojeni venom and bring a new perspective to assist in AML treatment.
Asunto(s)
Antineoplásicos , Bothrops , Desintegrinas , Leucemia Mieloide Aguda , Humanos , Desintegrinas/farmacología , Desintegrinas/química , Desintegrinas/aislamiento & purificación , Leucemia Mieloide Aguda/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Células HL-60 , Venenos de Crotálidos/química , Agregación Plaquetaria/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Línea Celular Tumoral , Serpientes VenenosasRESUMEN
Background: Parkinson's disease (PD) is the second most prevalent neurodegenerative disease. There is no effective treatment for neurodegenerative diseases. Snake venoms are a cocktail of proteins and peptides with great therapeutic potential and might be useful in the treatment of neurodegenerative diseases. Crotapotin is the acid chain of crotoxin, the major component of Crotalus durissus collilineatus venom. PD is characterized by low levels of neurotrophins, and synaptic and axonal degeneration; therefore, neurotrophic compounds might delay the progression of PD. The neurotrophic potential of crotapotin has not been studied yet. Methods: We evaluated the neurotrophic potential of crotapotin in untreated PC12 cells, by assessing the induction of neurite outgrowth. The activation of the NGF signaling pathway was investigated through pharmacological inhibition of its main modulators. Additionally, its neuroprotective and neurorestorative effects were evaluated by assessing neurite outgrowth and cell viability in PC12 cells treated with the dopaminergic neurotoxin MPP+ (1-methyl-4-phenylpyridinium), known to induce Parkinsonism in humans and animal models. Results: Crotapotin induced neuritogenesis in PC12 cells through the NGF-signaling pathway, more specifically, by activating the NGF-selective receptor trkA, and the PI3K/Akt and the MAPK/ERK cascades, which are involved in neuronal survival and differentiation. In addition, crotapotin had no cytotoxic effect and protected PC12 cells against the inhibitory effects of MPP+ on cell viability and differentiation. Conclusion: These findings show, for the first time, that crotapotin has neurotrophic/neuroprotective/neurorestorative potential and might be beneficial in Parkinson's disease. Additional studies are necessary to evaluate the toxicity of crotapotin in other cell models.
RESUMEN
Snake venom disintegrins are low molecular weight, non-enzymatic proteins rich in cysteine, present in the venom of snakes from the families Viperidae, Crotalidae, Atractaspididae, Elapidae, and Colubridae. This family of proteins originated in venom through the proteolytic processing of metalloproteinases (SVMPs), which, in turn, evolved from a gene encoding an A Disintegrin And Metalloprotease (ADAM) molecule. Disintegrins have a recognition motif for integrins in their structure, allowing interaction with these transmembrane adhesion receptors and preventing their binding to proteins in the extracellular matrix and other cells. This interaction gives disintegrins their wide range of biological functions, including inhibition of platelet aggregation and antitumor activity. As a result, many studies have been conducted in an attempt to use these natural compounds as a basis for developing therapies for the treatment of various diseases. Furthermore, the FDA has approved Tirofiban and Eptifibatide as antiplatelet compounds, and they are synthesized from the structure of echistatin and barbourin, respectively. In this review, we discuss some of the main functional and structural characteristics of this class of proteins and their potential for therapeutic use.
RESUMEN
Bothrops snakebite envenomation (SBE) is consider an important health problem in Brazil, where Bothrops atrox is mainly responsible in the Brazilian Amazon. Local effects represent a relevant clinical issue, in which inflammatory signs and symptoms in the bite site represent a potential risk for short and long-term disabilities. Among local complications, secondary infections (SIs) are a common clinical finding during Bothrops atrox SBE and are described by the appearance of signs such as abscess, cellulitis or necrotizing fasciitis in the affected site. However, the influence of SI in the local events is still poorly understood. Therefore, the present study describes for the first time the impact of SBE wound infection on local manifestations and inflammatory response from patients of Bothrops atrox SBE in the Brazilian Amazon. This was an observational study carried out at the Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus (Brazil), involving victims of Bothrops SBE. Clinical and laboratorial data were collected along with blood samples for the quantification of circulating cytokines and chemokines before antivenom administrations (T0) and 24 h (T1), 48 h (T2), 72 h (T3) and 7 days after (T4). From the 94 patients included in this study, 42 presented SI (44.7%) and 52 were without SI (NSI, 55.3%). Patients classified as moderate envenoming presented an increased risk of developing SI (OR = 2.69; CI 95% = 1.08-6.66, p = 0.033), while patients with bites in hands showed a lower risk (OR = 0.20; CI 95% = 0.04-0.96, p = 0.045). During follow-up, SI patients presented a worsening of local temperature along with a sustained profile of edema and pain, while NSI patients showed a tendency to restore and were highlighted in patients where SI was diagnosed at T2. As for laboratorial parameters, leukocytes, erythrocyte sedimentation ratio, fibrinogen and C-reactive protein were found increased in patients with SI and more frequently in patients diagnosed with SI at T3. Higher levels of circulating IL-2, IL-10, IL-6, TNF, INF-γ and CXCL-10 were observed in SI patients along with marked correlations between these mediators and IL-4 and IL-17, showing a plurality in the profile with a mix of Th1/Th2/Th17 response. The present study reports for the first time the synergistic effects of local infection and envenoming on the inflammatory response represented by local manifestations, which reflected on laboratorial parameters and inflammatory mediators and thus help improve the clinical management of SI associated to Bothrops SBE.
Asunto(s)
Bothrops , Coinfección , Mordeduras de Serpientes , Humanos , Animales , Mordeduras de Serpientes/complicaciones , Mordeduras de Serpientes/diagnóstico , Brasil/epidemiología , Antivenenos/uso terapéuticoRESUMEN
Enterovirus A71 (EVA71) belongs to the Picornaviridae family and is the main etiological agent of hand, foot, and mouth disease (HFMD). There is no approved antiviral against EVA71, and therefore the search for novel anti-EVA71 therapeutics is essential. In this context, the antiviral activity of proteins isolated from snake venoms has been reported against a range of viruses. Here, the proteins CM10 and CM14 isolated from Bothrops moojeni, and Crotamin and PLA2CB isolated from Crotalus durissus terrificus were investigated for their antiviral activity against EVA71 infection. CM14 and Crotamin possessed a selective index (SI) of 170.8 and 120.4, respectively, while CM10 and PLA2CB had an SI of 67.4 and 12.5, respectively. CM14 inhibited all steps of viral replication (protective effect: 76 %; virucidal: 99 %; and post-entry: 99 %). Similarly, Crotamin inhibited up to 99 % of three steps. In contrast, CM10 and PLA2CB impaired one or two steps of EVA71 replication, respectively. Further dose-response assays using increasing titres of EVA71 were performed and CM14 and Crotamin retained functionality with high concentrations of EVA71 (up to 1000 TCID50). These data demonstrate that proteins isolated from snake venom are potent inhibitors of EVA71 and could be used as scaffolds for future development of novel antivirals.
Asunto(s)
Venenos de Crotálidos , Infecciones por Enterovirus , Enterovirus , Enfermedad de Boca, Mano y Pie , Animales , Brasil , Proteínas , Antivirales/farmacología , Antígenos Virales , Serpientes , Fosfolipasas A2RESUMEN
Phosphodiesterases are exonucleases that sequentially hydrolyse phosphodiester bonds of polynucleotides from the 3'-end and release 5-mononucleotides. After more than one decade without any advance in the study of Bothropic phosphodiesterases, we described here the isolation of the first phosphodiesterase from Bothrops jararacussu, which we named Bj-PDE. A five-step column chromatography procedure (size exclusion, hydrophobic interaction, cation exchange, lentil lectin affinity, and blue sepharose affinity) enabled isolation of Bj-PDE with preserved and stable enzymatic activity (bis(p-nitrophenyl) phosphate substrate), Km = 6.9 mM (± 0.7 mM), kcat/Km = 1.7 × 104 M-1 s-1 (± 0.2 × 104 M-1 s-1), MW = 116 kDa (SDS-PAGE), optimum activity around 45 °C at pH 8.0, and stability for 81 days at different storage temperatures (8, -20, and - 80 °C). Ca2+ and Mg2+ ions positively influenced Bj-PDE activity, while EDTA had the opposite action. Zn2+ restored >50 % of enzyme activity after its inhibition by EDTA. The Bj-PDE partial sequence identified by mass spectrometry was very similar to the sequence of BATXPDE1 from Bothrops atrox, which was evolutionarily close to this new PDE. Therefore, our study represents an important progress on the isolation of this minor toxin and sheds new lights on the properties and bioprospection of bothropic phosphodiesterases.
Asunto(s)
Bothrops , Venenos de Crotálidos , Animales , Venenos de Crotálidos/química , Hidrolasas Diéster Fosfóricas/química , Ácido Edético , CromatografíaRESUMEN
Zika virus is the etiologic agent of Zika fever, and has been previously associated with cases of microcephaly, drawing the attention of the health authorities worldwide. However, no vaccine or antiviral are currently available. Phospholipases A2 (PLA2) isolated from snake venoms have demonstrated antiviral activity against several viruses. Here we demonstrated the anti-ZIKV activity of bothropstoxins-I and II (BthTX-I and II) isolated from Bothrops jararacussu venom. Vero E6 cells were infected with ZIKVPE243 in the presence of compounds for 72 h, when virus titers were evaluated. BthTX-I and II presented strong dose-dependent inhibition of ZIKV, with a SI of 149.1 and 1.44 × 105, respectively. These toxins mainly inhibited the early stages of the replicative cycle, such as during the entry of ZIKV into host cells, as shown by the potent virucidal effect, suggesting the action of these toxins on the virus particles. Moreover, BthTX-I and II presented significant activity towards post-entry stages of the ZIKV replicative cycle. Molecular docking analyses showed that BthTX-I and II potentially interact with DII and DIII domains from ZIKV Envelope protein. Our findings show that these PLA2s could be used as useful templates for the development of future antiviral candidate drugs against Zika fever.
Asunto(s)
Bothrops , Venenos de Crotálidos , Infección por el Virus Zika , Virus Zika , Animales , Humanos , Antivirales/farmacología , Bothrops/metabolismo , Infección por el Virus Zika/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Venenos de Crotálidos/metabolismo , AnticuerposRESUMEN
Snake venom disintegrins are low molecular weight, non-enzymatic proteins rich in cysteine, present in the venom of snakes from the families Viperidae, Crotalidae, Atractaspididae, Elapidae, and Colubridae. This family of proteins originated in venom through the proteolytic processing of metalloproteinases (SVMPs), which, in turn, evolved from a gene encoding an A Disintegrin And Metalloprotease (ADAM) molecule. Disintegrins have a recognition motif for integrins in their structure, allowing interaction with these transmembrane adhesion receptors and preventing their binding to proteins in the extracellular matrix and other cells. This interaction gives disintegrins their wide range of biological functions, including inhibition of platelet aggregation and antitumor activity. As a result, many studies have been conducted in an attempt to use these natural compounds as a basis for developing therapies for the treatment of various diseases. Furthermore, the FDA has approved Tirofiban and Eptifibatide as antiplatelet compounds, and they are synthesized from the structure of echistatin and barbourin, respectively. In this review, we discuss some of the main functional and structural characteristics of this class of proteins and their potential for therapeutic use.(AU)
Asunto(s)
Venenos de Serpiente/uso terapéutico , Desintegrinas/uso terapéuticoRESUMEN
PEGylation was firstly described around 50 years ago and has been used for more than 30 years as a strategy to improve the drugability of biopharmaceuticals. However, it remains poorly employed in toxinology, even though it may be a promising strategy to empower these compounds in therapeutics. This work reports the PEGylation of rCollinein-1, a recombinant snake venom serine protease (SVSP), able to degrade fibrinogen and inhibit the hEAG1 potassium channel. We compared the functional, structural, and immunogenic properties of the non-PEGylated (rCollinein-1) and PEGylated (PEG-rCollinein-1) forms. PEG-rCollinein-1 shares similar kinetic parameters with rCollinein-1, maintaining its capability of degrading fibrinogen, but with reduced activity on hEAG1 channel. CD analysis revealed the maintenance of protein conformation after PEGylation, and thermal shift assays demonstrated similar thermostability. Both forms of the enzyme showed to be non-toxic to peripheral blood mononuclear cells (PBMC). In silico epitope prediction indicated three putative immunogenic peptides. However, immune response on mice showed PEG-rCollinein-1 was devoid of immunogenicity. PEGylation directed rCollinein-1 activity towards hemostasis control, broadening its possibilities to be employed as a defibrinogenant agent.
Asunto(s)
Productos Biológicos/farmacología , Polietilenglicoles/química , Proteínas Recombinantes/farmacología , Venenos de Serpiente/farmacología , Trombina/farmacología , Secuencia de Aminoácidos , Animales , Supervivencia Celular/efectos de los fármacos , Femenino , Fibrinógeno/metabolismo , Humanos , Cinética , Leucocitos Mononucleares/efectos de los fármacos , Masculino , Ratones Endogámicos BALB C , Tamaño de la Partícula , Péptidos/química , Péptidos/inmunología , XenopusRESUMEN
The abusive consumption of thermogenic supplements occurs worldwide and deserves special attention due to their use to stimulate weight loss and prevent obesity. Thermogenic formulations usually contain Synephrine (SN) and Caffeine (CAF), stimulating compounds extracted from natural sources, but no genetic toxicology studies have predicted this hazardous combination potential. This study examined the toxicogenomic responses induced by SN and CAF, either alone or in combination, in the human hepatic cell line HepG2 in vitro. SN (0.03-30 µM) and CAF (0.6-600 µM) alone did neither decrease cell viability nor induce DNA damage, as assessed using the MTT and comet assays, respectively. SN (3 µM) and CAF (30-600 µM) were combined at concentrations similar to those found in commercial dietary supplements. SN/CAF at 3:90 and 3:600 µM ratios significantly decreased cell viability and increased DNA damage levels in HepG2 cells. CAF (600 µM) and the SN/CAF association at 3:60, 3:90, and 3:600 µM ratios promoted cell death by apoptosis, as demonstrated by flow cytometry. Similar results were observed in gene expression (RT-qPCR): SN/CAF up-regulated the expression of apoptosis- (BCL-2 and CASP9) and DNA repair-related (XPC) genes. SN/CAF at 3:90 µM also downregulated the expression of cell cycle control (CDKN1A) genes. In conclusion, the SN/CAF combination reduces cell viability by inducing apoptosis, damages DNA, and modulates the transcriptional expression of apoptosis-, cell cycle-, and DNA repair-related genes in human hepatic (HepG2) cells in vitro. These effects can be worrisome to consumers of thermogenic supplements.
Asunto(s)
Apoptosis/efectos de los fármacos , Cafeína/farmacología , Daño del ADN/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Sinefrina/farmacología , Transcripción Genética/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ensayo Cometa/métodos , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamiento farmacológicoRESUMEN
Chikungunya virus (CHIKV) is the etiologic agent of Chikungunya fever, a globally spreading mosquito-borne disease. There is no approved antiviral or vaccine against CHIKV, highlighting an urgent need for novel therapies. In this context, snake venom proteins have demonstrated antiviral activity against several viruses, including arboviruses which are relevant to public health. In particular, the phospholipase A2CB (PLA2CB), a protein isolated from the venom of Crotalus durissus terrificus was previously shown to possess anti-inflammatory, antiparasitic, antibacterial and antiviral activities. In this study, we investigated the multiple effects of PLA2CB on the CHIKV replicative cycle in BHK-21 cells using CHIKV-nanoluc, a marker virus carrying nanoluciferase reporter. The results demonstrated that PLA2CB possess a strong anti-CHIKV activity with a selectivity index of 128. We identified that PLA2CB treatment protected cells against CHIKV infection, strongly impairing virus entry by reducing adsorption and post-attachment stages. Moreover, PLA2CB presented a modest yet significant activity towards post-entry stages of CHIKV replicative cycle. Molecular docking calculations indicated that PLA2CB may interact with CHIKV glycoproteins, mainly with E1 through hydrophobic interactions. In addition, infrared spectroscopy measurements indicated interactions of PLA2CB and CHIKV glycoproteins, corroborating with data from in silico analyses. Collectively, this data demonstrated the multiple antiviral effects of PLA2CB on the CHIKV replicative cycle, and suggest that PLA2CB interacts with CHIKV glycoproteins and that this interaction blocks binding of CHIKV virions to the host cells.
Asunto(s)
Virus Chikungunya/efectos de los fármacos , Venenos de Crotálidos/enzimología , Glicoproteínas/metabolismo , Fosfolipasas A2/farmacología , Internalización del Virus/efectos de los fármacos , Animales , Línea Celular , Virus Chikungunya/fisiología , Cricetinae , Crotalus , Simulación del Acoplamiento Molecular , Fosfolipasas A2/aislamiento & purificación , Fosfolipasas A2/metabolismo , Unión Proteica , Replicación Viral/efectos de los fármacosRESUMEN
This study reports the isolation, structural, biochemical, and functional characterization of a novel phosphodiesterase from Crotalus durissus collilineatus venom (CdcPDE). CdcPDE was successfully isolated from whole venom using three chromatographic steps and represented 0.7% of total protein content. CdcPDE was inhibited by EDTA and reducing agents, demonstrating that metal ions and disulfide bonds are necessary for its enzymatic activity. The highest enzymatic activity was observed at pH 8-8.5 and 37 °C. Kinetic parameters indicated a higher affinity for the substrate bis(p-nitrophenyl) phosphate compared to others snake venom PDEs. Its structural characterization was done by the determination of the protein primary sequence by Edman degradation and mass spectrometry, and completed by the building of molecular and docking-based models. Functional in vitro assays showed that CdcPDE is capable of inhibiting platelet aggregation induced by adenosine diphosphate in a dose-dependent manner and demonstrated that CdcPDE is cytotoxic to human keratinocytes. CdcPDE was recognized by the crotalid antivenom produced by the Instituto Butantan. These findings demonstrate that the study of snake venom toxins can reveal new molecules that may be relevant in cases of snakebite envenoming, and that can be used as molecular tools to study pathophysiological processes due to their specific biological activities.
Asunto(s)
Venenos de Crotálidos , Queratinocitos/efectos de los fármacos , Hidrolasas Diéster Fosfóricas , Animales , Células Cultivadas , Venenos de Crotálidos/química , Crotalus , Humanos , Cinética , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/aislamiento & purificación , Hidrolasas Diéster Fosfóricas/toxicidad , Especificidad por SustratoRESUMEN
This study aims to examine whether two L-amino acid oxidases isolated from Bothrops snake venom (SV-LAAOs) were cytotoxic to Leishmania (Leishmania) amazonensis and Leishmania (Viannia) braziliensis, two causative agents of leishmaniasis, which is an endemic disease in tropical and subtropical countries. The SV-LAAOs BjussuLAAO-II and BmooLAAO-II were isolated from Bothrops jararacussu and Bothrops moojeni venom, respectively, through a three-step chromatography process that used molecular exclusion, hydrophobic interaction, and affinity columns. BmooLAAO-II is a new SV-LAAO isoform that we isolated in this study. The purified BjussuLAAO-II and BmooLAAO-II had high L-amino acid oxidase-specific activity: 3481.17 and 4924.77 U/mg/min, respectively. Both SV-LAAOs were strongly cytotoxic to the two Leishmania species, even at low concentrations. At the same concentration, BjussuLAAO-II and BmooLAAO-II exerted different cytotoxic effects on the parasites. We reported for the first time that the SV-LAAOs suppressed cell proliferation and altered the mitochondrial membrane potential of the two Leishmania species. Surprisingly, BjussuLAAO-II increased the intracellular reactive oxygen species production only in L. (L.) amazonensis, while BmooLAAO-II increased the intracellular reactive oxygen species production only in L. (V.) braziliensis, indicating that these SV-LAAOs had a certain specificity of action.
Asunto(s)
Antiprotozoarios/aislamiento & purificación , Antiprotozoarios/farmacología , Bothrops , Venenos de Crotálidos/enzimología , L-Aminoácido Oxidasa/aislamiento & purificación , L-Aminoácido Oxidasa/farmacología , Leishmania/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Brasil , Cromatografía , Activación Enzimática , L-Aminoácido Oxidasa/química , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mitocondrias/metabolismo , Pruebas de Sensibilidad Parasitaria , Especies Reactivas de Oxígeno/metabolismoRESUMEN
BACKGROUND: Resistance to apoptosis in chronic myeloid leukemia (CML) is associated with constitutive tyrosine kinase activity of the Bcr-Abl oncoprotein. The deregulated expression of apoptosis-related genes and alteration in epigenetic machinery may also contribute to apoptosis resistance in CML. Tyrosine kinase inhibitors target the Bcr-Abl oncoprotein and are used in CML treatment. The resistance of CML patients to tyrosine kinase inhibitors has guided the search for new compounds that may induce apoptosis in Bcr-Abl+ leukemic cells and improve the disease treatment. METHODS: In the present study, we investigated whether the L-amino acid oxidase isolated from Bothrops moojeni snake venom (BmooLAAO-I) (i) was cytotoxic to Bcr-Abl+ cell lines (HL-60.Bcr-Abl, K562-S, and K562-R), HL-60 (acute promyelocytic leukemia) cells, the non-tumor cell line HEK-293, and peripheral blood mononuclear cells (PBMC); and (ii) affected epigenetic mechanisms, including DNA methylation and microRNAs expression in vitro. RESULTS: BmooLAAO-I induced ROS production, apoptosis, and differential DNA methylation pattern of regulatory apoptosis genes. The toxin upregulated expression of the pro-apoptotic genes BID and FADD and downregulated DFFA expression in leukemic cell lines, as well as increased miR-16 expression - whose major predicted target is the anti-apoptotic gene BCL2 - in Bcr-Abl+ cells. CONCLUSION: BmooLAAO-I exerts selective antitumor action mediated by H2O2 release and induces apoptosis, and alterations in epigenetic mechanisms. These results support future investigations on the effect of BmooLAAO-I on in vivo models to determine its potential in CML therapy.
RESUMEN
BACKGROUND: Snake venom phospholipases A2 (svPLA2) are biologically active toxins, capable of triggering and modulating a wide range of biological functions. Among the svPLA2s, crotoxin (CTX) has been in the spotlight of bioprospecting research due to its role in modulating immune response and hemostasis. In the present study, novel anticoagulant mechanisms of CTX, and the modulation of inflammation-induced coagulation were investigated. METHODS: CTX anticoagulant activity was evaluated using platelet poor plasma (PPP) and whole blood (WB), and also using isolated coagulation factors and complexes. The toxin modulation of procoagulant and pro-inflammatory effects was evaluated using the expression of tissue factor (TF) and cytokines in lipopolysaccharide (LPS)-treated peripheral blood mononuclear cells (PBMC) and in WB. RESULTS: The results showed that CTX impaired clot formation in both PPP and WB, and was responsible for the inhibition of both intrinsic (TF/factor VIIa) and extrinsic (factor IXa/factor VIIIa) tenase complexes, but not for factor Xa and thrombin alone. In addition, the PLA2 mitigated the prothrombinase complex by modulating the coagulation phospholipid role in the complex. In regards to the inflammation-coagulation cross talk, the toxin was capable of reducing the production of the pro-inflammatory cytokines IL-1ß, IL-6 and TNF-α, and was followed by decreased levels of TF and procoagulant activity from LPS-treated PBMC either isolated or in WB. CONCLUSION: The results obtained in the present study recognize the toxin as a novel medicinal candidate to be applied in inflammatory diseases with coagulation disorders.
RESUMEN
Adipose tissue secretes proinflammatory mediators which promote systemic and adipose tissue inflammation seen in obesity. Group IIA (GIIA)-secreted phospholipase A2 (sPLA2) enzymes are found to be elevated in plasma and adipose tissue from obese patients and are active during inflammation, generating proinflammatory mediators, including prostaglandin E2 (PGE2). PGE2 exerts anti-lipolytic actions and increases triacylglycerol levels in adipose tissue. However, the inflammatory actions of GIIA sPLA2s in adipose tissue cells and mechanisms leading to increased PGE2 levels in these cells are unclear. This study investigates the ability of a representative GIIA sPLA2, MT-III, to activate proinflammatory responses in preadipocytes, focusing on the biosynthesis of prostaglandins, adipocytokines and mechanisms involved in these effects. Our results showed that MT-III induced biosynthesis of PGE2, PGI2, MCP-1, IL-6 and gene expression of leptin and adiponectin in preadipocytes. The MT-III-induced PGE2 biosynthesis was dependent on cytosolic PLA2 (cPLA2)-α, cyclooxygenases (COX)-1 and COX-2 pathways and regulated by a positive loop via the EP4 receptor. Moreover, MT-III upregulated COX-2 and microsomal prostaglandin synthase (mPGES)-1 protein expression. MCP-1 biosynthesis induced by MT-III was dependent on the EP4 receptor, while IL-6 biosynthesis was dependent on EP3 receptor engagement by PGE2. These data highlight preadipocytes as targets for GIIA sPLA2s and provide insight into the roles played by this group of sPLA2s in obesity.
Asunto(s)
Tejido Adiposo/metabolismo , Mediadores de Inflamación/metabolismo , Obesidad/metabolismo , Fosfolipasas A2/metabolismo , Células 3T3-L1 , Animales , Células Cultivadas , Mediadores de Inflamación/química , RatonesRESUMEN
Respiratory compromise in Crotalus durissus terrificus (C.d.t.) snakebite is an important pathological condition. Considering that crotoxin (CTX), a phospholipase A2 from C.d.t. venom, is the main component of the venom, the present work investigated the toxin effects on respiratory failure. Lung mechanics, morphology and soluble markers were evaluated from Swiss male mice, and mechanism determined using drugs/inhibitors of eicosanoids biosynthesis pathway and autonomic nervous system. Acute respiratory failure was observed, with an early phase (within 2 h) characterized by enhanced presence of eicosanoids, including prostaglandin E2, that accounted for the increased vascular permeability in the lung. The alterations of early phase were inhibited by indomethacin. The late phase (peaked 12 h) was marked by neutrophil infiltration, presence of pro-inflammatory cytokines/chemokines, and morphological alterations characterized by alveolar septal thickening and bronchoconstriction. In addition, lung mechanical function was impaired, with decreased lung compliance and inspiratory capacity. Hexamethonium, a nicotinic acetylcholine receptor antagonist, hampered late phase damages indicating that CTX-induced lung impairment could be associated with cholinergic transmission. The findings reported herein highlight the impact of CTX on respiratory compromise, and introduce the use of nicotinic blockers and prostanoids biosynthesis inhibitors as possible symptomatic therapy to Crotalus durissus terrificus snakebite.
Asunto(s)
Crotoxina/toxicidad , Dinoprostona/metabolismo , Receptores Nicotínicos/metabolismo , Insuficiencia Respiratoria/metabolismo , Mordeduras de Serpientes/metabolismo , Animales , Broncoconstricción , Citocinas/metabolismo , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/fisiopatología , Masculino , Ratones , Insuficiencia Respiratoria/etiología , Insuficiencia Respiratoria/fisiopatología , Mordeduras de Serpientes/complicacionesRESUMEN
Snake venom serine proteases (SVSPs) are complex and multifunctional enzymes, acting primarily on hemostasis. In this work, we report the hitherto unknown inhibitory effect of a SVSP, named collinein-1, isolated from the venom of Crotalus durissus collilineatus, on a cancer-relevant voltage-gated potassium channel (hEAG1). Among 12 voltage-gated ion channels tested, collinein-1 selectively inhibited hEAG1 currents, with a mechanism independent of its enzymatic activity. Corroboratively, we demonstrated that collinein-1 reduced the viability of human breast cancer cell line MCF7 (high expression of hEAG1), but does not affect the liver carcinoma and the non-tumorigenic epithelial breast cell lines (HepG2 and MCF10A, respectively), which present low expression of hEAG1. In order to obtain both functional and structural validation of this unexpected discovery, where an unusually large ligand acts as an inhibitor of an ion channel, a recombinant and catalytically inactive mutant of collinein-1 (His43Arg) was produced and found to preserve its capability to inhibit hEAG1. A molecular docking model was proposed in which Arg79 of the SVSP 99-loop interacts directly with the potassium selectivity filter of the hEAG1 channel.
Asunto(s)
Hemostasis , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio/metabolismo , Serina Proteasas/toxicidad , Venenos de Serpiente/toxicidad , Secuencia de Aminoácidos , Antineoplásicos/farmacología , Catálisis , Línea Celular , Diseño de Fármacos , Fenómenos Electrofisiológicos , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Canales de Potasio Éter-A-Go-Go/química , Humanos , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Bloqueadores de los Canales de Potasio/química , Canales de Potasio/química , Proteínas Recombinantes , Serina Proteasas/química , Venenos de Serpiente/química , Relación Estructura-ActividadRESUMEN
Bothrops snake venoms contain biologically active components, including L-amino acid oxidases (LAAO) that induce significant leukocyte accumulation at inflammatory sites characterized by early neutrophil infiltration. As it remains unclear how snake venoms modulate neutrophil activation and chemokine production, here we examined whether Bothrops moojeni crude venom (BmV) and its LAAO (BmooLAAO-I) affect expression of the surface activation markers CD11b and CD66b, production of the chemokines CCL2/MCP-1, CCL5/RANTES, CXCL8/IL-8, CXCL9/MIG, and CXCL-10/IP-10, and activation of oxidative burst in human neutrophils. Cell viability, expression of activation markers, and chemokine production were assessed by flow cytometry, while the oxidative burst response was measured by chemiluminescence. BmV at 50 and 75 µg/mL reduced CXCL8/IL-8 (p < 0.001 and p < 0.01, respectively) and CCL2/MCP-1 production (p < 0.05), while BmooLAAO-I at the same concentrations reduced only CCL2/MCP-1 production (p < 0.01). These effects were accompanied by CD11b upregulation (p < 0.05 for 50 and 75 µg/mL BmV; p < 0.01 for 50 and 75 µg/mL BmooLAAO-I) and CD66b downregulation (p < 0.05 for 50 and 75 µg/mL BmV). Both BmV and BmooLAAO-I at concentrations ranging from 0.625 to 5 µg/mL suppressed the oxidative burst of neutrophils stimulated with phorbol 12-myristate 13-acetate, while BmooLAAO-I at 2.5 and 5 µg/mL also suppressed the neutrophil response stimulated with opsonized zymosan. Considering that neutrophils participate in the pathogenesis of autoimmune and inflammatory diseases, the findings reported herein indicate that BmV and BmooLAAO-I are potential immunomodulating agents.
Asunto(s)
Bothrops , Venenos de Crotálidos/farmacología , L-Aminoácido Oxidasa/farmacología , Neutrófilos/efectos de los fármacos , Proteínas de Reptiles/farmacología , Adulto , Animales , Antígeno CD11b/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Citocinas/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neutrófilos/metabolismo , Estallido Respiratorio/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacosRESUMEN
The synthetic peptide p-BTX-I is based on the native peptide (formed by glutamic acid, valine and tryptophan) isolated from Bothrops atrox venom. We have previously demonstrated its neuroprotective and neurotrophic properties in PC12 cells treated with the dopaminergic neurotoxin 1-methyl-4-phenylpyridinium (MPP+). Now, we have investigated the neuroprotective effects and mechanisms of p-BTX-I against the toxicity of acrolein in PC12 cells. Studies have demonstrated that acrolein might play an important role in the etiology of Alzheimer's disease (AD), which is characterized by neuronal and synaptic loss. Our results showed that not only acrolein reduced cell differentiation and cell viability, but also altered the expression of markers of synaptic communication (synapsin I), energy metabolism (AMPK-α, Sirt I and glucose uptake), and cytoskeleton (ß-III-tubulin). Treatment with p-BTX-I increased the percentage of differentiation in cells treated with acrolein and significantly attenuated cell viability loss, besides counteracting the negative effects of acrolein on synapsin I, AMPK-α, Sirt I, glucose uptake, and ß-III-tubulin. Additionally, p-BTX-I alone increased the expression of apolipoprotein E (apoE) gene, associated with the proteolytic degradation of ß-amyloid peptide aggregates, a hallmark of AD. Taken together, these findings demonstrate that p-BTX-I protects against acrolein-induced neurotoxicity and might be a tool for the development of novel drugs for the treatment of neurodegenerative diseases.