Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pharmaceutics ; 13(9)2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34575549

RESUMEN

Modifying hydrogels in order to enhance their conductivity is an exciting field with applications in cardio and neuro-regenerative medicine. Therefore, we have designed hybrid alginate hydrogels containing uncoated and protein-coated reduced graphene oxide (rGO). We specifically studied the adsorption of three different proteins, BSA, elastin, and collagen, and the outcomes when these protein-coated rGO nanocomposites are embedded within the hydrogels. Our results demonstrate that BSA, elastin, and collagen are adsorbed onto the rGO surface, through a non-spontaneous phenomenon that fits Langmuir and pseudo-second-order adsorption models. Protein-coated rGOs are able to preclude further adsorption of erythropoietin, but not insulin. Collagen showed better adsorption capacity than BSA and elastin due to its hydrophobic nature, although requiring more energy. Moreover, collagen-coated rGO hybrid alginate hydrogels showed an enhancement in conductivity, showing that it could be a promising conductive scaffold for regenerative medicine.

2.
Pharmaceutics ; 12(6)2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32545286

RESUMEN

The use of embedded cells within alginate matrices is a developing technique with great clinical applications in cell-based therapies. However, one feature that needs additional investigation is the improvement of alginate-cells viability, which could be achieved by integrating other materials with alginate to improve its surface properties. In recent years, the field of nanotechnology has shown the many properties of a huge number of materials. Graphene oxide (GO), for instance, seems to be a good choice for improving alginate cell viability and functionality. We previously observed that GO, coated with fetal bovine serum (FBS) within alginate hydrogels, improves the viability of embedded myoblasts. In the current research, we aim to study several proteins, specifically bovine serum albumin (BSA), type I collagen and elastin, to discern their impact on the previously observed improvement on embedded myoblasts within alginate hydrogels containing GO coated with FBS. Thus, we describe the mechanisms of the formation of BSA, collagen and elastin protein layers on the GO surface, showing a high adsorption by BSA and elastin, and a decreasing GO impedance and capacitance. Moreover, we described a better cell viability and protein release from embedded cells within hydrogels containing protein-coated GO. We conclude that these hybrid hydrogels could provide a step forward in regenerative medicine.

3.
ACS Appl Mater Interfaces ; 12(14): 16436-16441, 2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32182419

RESUMEN

Membranes are a critical technology for energy-efficient separation processes. The routine method of evaluating membrane performance is a permeation measurement. However, such measurements can be limited in terms of their utility: membrane microstructure is often poorly characterized; membranes or sealants leak; and conditions in the gas phase are poorly controlled and frequently far-removed from the conditions employed in the majority of real processes. Here, we demonstrate a new integrated approach to determine permeation rates, using two novel supported molten-salt membrane geometries. In both cases, the membranes comprise a solid support with laser-drilled pores, which are infiltrated with a highly CO2-selective molten carbonate salt. First, we fabricate an optically transparent single-crystal, single-pore model membrane by local laser drilling. By infiltrating the single pore with molten carbonate, monitoring the gas-liquid interface optically, and using image analysis on gas bubbles within the molten carbonate (because they change volume upon controlled changes in gas composition), we extract CO2 permeation rates with exceptional speed and precision. Additionally, in this arrangement, microstructural characterization is more straightforward and a sealant is not required, eliminating a major source of leakage. Furthermore, we demonstrate that the technique can be used to probe a previously unexplored driving force region, too low to access with conventional methods. Subsequently, we fabricate a leak-free tubular-supported molten-salt membrane with 1000 laser-drilled pores (infiltrated with molten carbonate) and employ a CO2-containing sweep gas to obtain permeation rates in a system that can be described with unprecedented precision. Together, the two approaches provide new ways to measure permeation rates with increased speed and at previously inaccesible conditions.

4.
IUCrJ ; 6(Pt 1): 128-135, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30713710

RESUMEN

The first fluorination of the cuspidine-related phases of Ln4(Al2O7□)O2 (where Ln = Sm, Eu, Gd) is reported. A low-temperature reaction with poly(vinyl-idene difluoride) lead to the fluorine being substituted in place of oxygen and inserted into the vacant position between the dialuminate groups. X-ray photoelectron spectroscopy shows the presence of the F 1s photoelectron together with an increase in Al 2p and rare-earth 4d binding energies supporting F incorporation. Energy-dispersive X-ray spectroscopy analyses are consistent with the formula Ln4(Al2O6F2)O2, confirming that substitution of one oxygen by two fluoride atoms has been achieved. Rietveld refinements show an expansion in the cell upon fluorination and confirm that the incorporation of fluoride in the Ln4(Al2O7□)O2 structure results in changes in Al coordination from four to five. Thus, the isolated tetrahedral dialuminate Al2O7 groups are converted to chains of distorted square-based pyramids. These structural results are also discussed based on Raman spectra.

5.
Inorg Chem ; 55(3): 1324-32, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26756498

RESUMEN

With appropriate doping or processing, Li7La3Zr2O12 (LLZO) is an excellent candidate to be used in Li batteries either as a solid electrolyte or as a separator between the Li anode and a liquid electrolyte. For both uses, the reactivity with water either from the air or in aqueous media is a matter of interest. We address here the structural changes undergone by LLZO as a result of H(+)/Li(+) exchange and relate them with the amount of H content and atomic distribution. Neutron diffraction is performed to elucidate Li and H location. Two different cubic phases derive from LLZO through H(+)/Li(+) exchange: Deep hydration up to 150 °C yields a noncentrosymmetric I4̅3d phase in which octahedral Li ions are exchanged by H ions, tetrahedral Li ions split into two sites with very different occupancies, and H ions form O4H4 entities around the less occupied tetrahedral site. Annealing above 300 °C results in a centrosymmetric Ia3̅d phase with lower H content in which Li ions occupy the usual sites of the cubic garnets and H ions occupy a split pseudooctahedral site. The centrosymmetric or noncentrosymmetric character is determined by the temperature at which exchange is performed and the H content. Both factors are not independent: at low temperature, the high H content favors H ordering around the vacant tetrahedra, while low H content and higher mobility at 350 °C lead to a disordered configuration of Li and H ions. The deeply hydrated garnets are stable up to at least 300 °C and also upon aging at room temperature.

6.
Inorg Chem ; 54(7): 3172-82, 2015 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-25790238

RESUMEN

A new hydrated sodium nickel fluoride with nominal composition NaNiF3·3H2O was synthesized using an aqueous solution route. Its structure was solved by means of ab initio methods from powder X-ray diffraction and neutron diffraction data. NaNiF3·3H2O crystallizes in the cubic crystal system, space group Pn3̅ with a = 7.91968(4) Å. The framework, derived from the ReO3 structure type, is built from NaX6 and NiX6 (X = O, F) corner-shared octahedra, in which F and O atoms are randomly distributed on a single anion site. The 2a × 2a × 2a superstructure arises from the strict alternate three-dimensional linking of NaX6 and NiX6 octahedra together with the simultaneous tilts of the octahedra from the cube axis (φ = 31.1°), with a significant participation of hydrogen bonding. NaNiF3·3H2O corresponds to a fully cation-ordered variant of the In(OH)3 structure, easily recognizable when formulated as NaNi(XH)6 (X = O, F). It constitutes one of the rare examples for the a(+)a(+)a(+) tilting scheme with 1:1 cation ordering in perovskite-related compounds. The Curie-like magnetic behavior well-reflects the isolated paramagnetic Ni(2+) centers without worth mentioning interactions. While X-ray and neutron diffraction data evidence Na/Ni order in combination with O/F disorder as a main feature of this fluoride, results from Raman and magic-angle spinning NMR spectroscopies support the existence of specific anion arrangements in isolated square windows identified in structural refinements. In particular, formation of water molecules derives from unfavorable FH bond formation.

7.
Nanoscale Res Lett ; 8(1): 233, 2013 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-23679938

RESUMEN

Laser ablation of selected coordination complexes can lead to the production of metal-carbon hybrid materials, whose composition and structure can be tailored by suitably choosing the chemical composition of the irradiated targets. This 'laser chemistry' approach, initially applied by our group to the synthesis of P-containing nanostructured carbon foams (NCFs) from triphenylphosphine-based Au and Cu compounds, is broadened in this study to the production of other metal-NCFs and P-free NCFs. Thus, our results show that P-free coordination compounds and commercial organic precursors can act as efficient carbon source for the growth of NCFs. Physicochemical characterization reveals that NCFs are low-density mesoporous materials with relatively low specific surface areas and thermally stable in air up to around 600°C. Moreover, NCFs disperse well in a variety of solvents and can be successfully chemically processed to enable their handling and provide NCF-containing biocomposite fibers by a wet-chemical spinning process. These promising results may open new and interesting avenues toward the use of NCFs for technological applications.

8.
Inorg Chem ; 48(20): 9693-9, 2009 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-19746982

RESUMEN

The thermal stability of nanostructured Ce(0.5)Zr(0.5)O(2) powders prepared by the Pechini method was studied on the nanometric scale by X-ray diffraction (XRD), energy-dispersive spectrometry (EDS), transmission electron microscopy (TEM), nuclear magnetic resonance (NMR), and Raman techniques. Obtained results demonstrate that amorphous powders coming from the thermal decomposition of the precursor transform into the stable crystalline state through one highly disordered and metastable intermediate. This is a new example of successive reactions controlled by Ostwald's rule in inorganic systems. At low calcination temperatures, the combination of Raman spectroscopy, high-resolution electron microscopy, and EDS nanoanalysis showed the formation from the precursor powder of a disordered pseudocubic phase. At 900 degrees C, metastable T' and stable T and C phases were detected in XRD patterns. As increasing temperature, crystallites growth and proportions of stable T and C phases increased at the expense of the T' phase, which completely disappeared at 1300 degrees C. In analyzed samples, the Raman technique and (crystal by crystal) EDS nanoanalyses were used to detect local phase inhomogeneity. Compositions and relative percentages of phases were investigated by XRD Rietveld analysis and discussed in terms of phase diagrams previously reported.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA