Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38255976

RESUMEN

Thoracic aortic aneurysm (TAA) has a prevalence of 0.16-0.34% and an incidence of 7.6 per 100,000 person-years, accounting for 1-2% of all deaths in Western countries. Currently, no effective pharmacological therapies have been identified to slow TAA development and prevent TAA rupture. Large TAAs are treated with open surgical repair and less invasive thoracic endovascular aortic repair, both of which have high perioperative mortality risk. Therefore, there is an urgent medical need to identify the cellular and molecular mechanisms underlying TAA development and rupture to develop new therapies. In this review, we summarize animal TAA models including recent developments in porcine and zebrafish models: porcine models can assess new therapeutic devices or intervention strategies in a large mammal and zebrafish models can employ large-scale small-molecule suppressor screening in microwells. The second part of the review covers current views of TAA pathogenesis, derived from recent studies using these animal models, with a focus on the roles of the transforming growth factor-beta (TGFß) pathway and the vascular smooth muscle cell (VSMC)-elastin-contractile unit. The last part discusses TAA treatment options as they emerge from recent preclinical studies.


Asunto(s)
Aneurisma de la Aorta Torácica , Rotura de la Aorta , Humanos , Animales , Porcinos , Pez Cebra , Aneurisma de la Aorta Torácica/etiología , Aneurisma de la Aorta Torácica/terapia , Modelos Animales , Contracción Muscular , Mamíferos
2.
Int J Mol Sci ; 24(21)2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37958938

RESUMEN

The rupture of an abdominal aortic aneurysm (AAA) causes about 200,000 deaths worldwide each year. However, there are currently no effective drug therapies to prevent AAA formation or, when present, to decrease progression and rupture, highlighting an urgent need for more research in this field. Increased vascular inflammation and enhanced apoptosis of vascular smooth muscle cells (VSMCs) are implicated in AAA formation. Here, we investigated whether hydralazine, which has anti-inflammatory and anti-apoptotic properties, inhibited AAA formation and pathological hallmarks. In cultured VSMCs, hydralazine (100 µM) inhibited the increase in inflammatory gene expression and apoptosis induced by acrolein and hydrogen peroxide, two oxidants that may play a role in AAA pathogenesis. The anti-apoptotic effect of hydralazine was associated with a decrease in caspase 8 gene expression. In a mouse model of AAA induced by subcutaneous angiotensin II infusion (1 µg/kg body weight/min) for 28 days in apolipoprotein E-deficient mice, hydralazine treatment (24 mg/kg/day) significantly decreased AAA incidence from 80% to 20% and suprarenal aortic diameter by 32% from 2.26 mm to 1.53 mm. Hydralazine treatment also significantly increased the survival rate from 60% to 100%. In conclusion, hydralazine inhibited AAA formation and rupture in a mouse model, which was associated with its anti-inflammatory and anti-apoptotic properties.


Asunto(s)
Angiotensina II , Aneurisma de la Aorta Abdominal , Animales , Ratones , Angiotensina II/farmacología , Antiinflamatorios/farmacología , Aorta Abdominal/metabolismo , Aneurisma de la Aorta Abdominal/inducido químicamente , Aneurisma de la Aorta Abdominal/tratamiento farmacológico , Aneurisma de la Aorta Abdominal/metabolismo , Apolipoproteínas/farmacología , Apolipoproteínas E , Apoptosis , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Ratones Noqueados
3.
Eur J Histochem ; 62(1): 2880, 2018 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-29569879

RESUMEN

Methanol, ethanol and formalin are commonly used as fixatives to preserve biological tissues from decay in the preparation of histological sections. Fixation of the inner layers of the tissue depends on the ability of the fixative to diffuse into the tissue. It is unknown whether methanol penetrates tissues at similar rates to other fixatives. This study aimed to compare the penetration rates of methanol, ethanol and formalin into bovine heart and liver tissues. The penetration distance and tissue shrinkage or expansion were measured by analysing the digital images of tissue before and after immersion in different fixatives for 1, 2, 6 or 10 h. Data were analysed using two-way ANOVA, followed by Bonferroni's post-hoc test. The penetration distance of methanol was significantly greater in both heart and liver tissues compared with that of ethanol (N=4, P<0.001). Methanol or ethanol immersion led to similar shrinkage of both tissues (P>0.05). The penetration rate of formalin was similar to that of ethanol in both tissues however it was significantly slower than methanol (N=4, P<0.005 in the heart; P<0.001 in the liver). The mean penetration coefficients of methanol, formalin and ethanol in the heart tissue were 2.609, 1.994 and 1.801, respectively, and 3.012, 2.153 and 2.113, respectively, in the liver tissue. The penetration coefficient of methanol was significantly greater than that of ethanol or formalin in both tissues (P<0.001 for each comparison). In conclusion, methanol penetrates tissue significantly faster than ethanol and formalin.


Asunto(s)
Etanol/farmacología , Formaldehído/farmacología , Hígado/efectos de los fármacos , Metanol/farmacología , Miocardio , Animales , Bovinos , Hígado/citología , Miocardio/citología , Factores de Tiempo , Fijación del Tejido/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA