Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Front Aging Neurosci ; 16: 1361244, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38655430

RESUMEN

Objective: The aim of this study was to cross-sectionally investigate how static balance changes throughout the aging process in older women aged from their early sixties to their late eighties. Methods: Forty-six older women (aged 62-89 years) were requested to stand barefoot and quietly on a force platform for 30 s with their eyes either open or closed. During the trials, the position of the center of foot pressure (CoP) and the acceleration of the body's center of mass (ACC) were measured. The root mean square (RMS) of the CoP and ACC values was calculated to evaluate the amplitude of postural sway and the level of regulatory activity, respectively. The mean power frequency of the ACC was also calculated to represent the temporal characteristics of regulatory activity. Results: In the anterior-posterior direction, there was no significant relationship between the RMS of CoP and the participants' age, whereas the RMS of ACC significantly increased with increasing age. In the mediolateral direction, however, the RMS of CoP significantly increased with increasing age, whereas the RMS of ACC did not change with age. The mean power frequency of ACC did not exhibit any age-related change in either the anterior-posterior or the mediolateral direction. Conclusion: The results indicate that static balance in older women aged in their early sixties to their late eighties exhibits distinctly contrasting aging patterns between the anterior-posterior and mediolateral directions. To prevent falls in older women, it is necessary to elucidate the physiological mechanisms responsible for the increase in mediolateral sway that occurs throughout old age.

2.
Front Sports Act Living ; 4: 760991, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35434618

RESUMEN

The purpose of this study was to examine the effects of occasional and habitual wearing of high-heeled shoes on static balance in young women. Groups of habitual high-heel wearers and non-wearers (n = 7 in both groups) were asked to stand quietly on a force platform without shoes (WS condition) or with high heels (heel area 1 cm2, heel height 7 cm) (HH condition). During the trials, the center-of-pressure (CoP) position in the anterior-posterior direction was measured, and its root mean square (as a measure of postural sway magnitude, CoPRMS) and mean velocity (as a measure of regulatory activity, CoPMV) were calculated. To further examine the effect of high-heel wearing on the temporal aspects of slow and fast processes in static balance, the CoP sway was decomposed into low- (below 0.5 Hz) and high- (above 0.5 Hz) frequency components, and then spectral analysis was performed. Results showed that the CoPRMS was not significantly different between the groups or between the shoe conditions, indicating that wearing high heels with a heel height of 7 cm did not increase the magnitude of postural sway, irrespective of high-heel experience. The CoPMV was significantly larger in the HH condition than in the WS condition, whereas it was not significantly different between the groups. This result indicates that wearing high heels increased the amount of regulatory activity in both habitual wearers and non-wearers. The spectral analysis further showed that habitual high-heel wearers showed significantly decreased rate of regulatory activity than non-wearers, both while standing with and without high heels. These results suggest that use-dependent changes in static balance control are evident in both high-heeled and without shoes conditions.

3.
PLoS One ; 10(10): e0140235, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26447883

RESUMEN

The development of upright postural control has often been investigated using time series of center of foot pressure (COP), which is proportional to the ankle joint torque (i.e., the motor output of a single joint). However, the center of body mass acceleration (COMacc), which can reflect joint motions throughout the body as well as multi-joint coordination, is useful for the assessment of the postural control strategy at the whole-body level. The purpose of the present study was to investigate children's postural control during quiet standing by using the COMacc. Ten healthy children and 15 healthy young adults were instructed to stand upright quietly on a force platform with their eyes open or closed. The COMacc as well as the COP in the anterior-posterior direction was obtained from ground reaction force measurement. We found that both the COMacc and COP could clearly distinguish the difference between age groups and visual conditions. We also found that the sway frequency of COMacc in children was higher than that in adults, for which differences in biomechanical and/or neural factors between age groups may be responsible. Our results imply that the COMacc can be an alternative force platform measure for assessing developmental changes in upright postural control.


Asunto(s)
Equilibrio Postural , Postura , Acelerometría , Adulto , Niño , Preescolar , Femenino , Humanos , Masculino , Movimiento , Adulto Joven
4.
Gait Posture ; 41(1): 291-4, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25248799

RESUMEN

The balance control mechanism during upright standing has often been investigated using single- or double-link inverted pendulum models, involving the ankle joint only or both the ankle and hip joints, respectively. Several studies, however, have reported that knee joint motion during quiet standing cannot be ignored. This study aimed to investigate the degree to which knee joint motion contributes to the center of mass (COM) kinematics during quiet standing. Eight healthy adults were asked to stand quietly for 30s on a force platform. Angular displacements and accelerations of the ankle, knee, and hip joints were calculated from kinematic data obtained by a motion capture system. We found that the amplitude of the angular acceleration was smallest in the ankle joint and largest in the hip joint (ankle < knee < hip). These angular accelerations were then substituted into three biomechanical models with or without the knee joint to estimate COM acceleration in the anterior-posterior direction. Although the "without-knee" models greatly overestimated the COM acceleration, the COM acceleration estimated by the "with-knee" model was similar to the actual acceleration obtained from force platform measurement. These results indicate substantial effects of knee joint motion on the COM kinematics during quiet standing. We suggest that investigations based on the multi-joint model, including the knee joint, are required to reveal the physiologically plausible balance control mechanism implemented by the central nervous system.


Asunto(s)
Articulación de la Rodilla/fisiología , Equilibrio Postural/fisiología , Aceleración , Adulto , Fenómenos Biomecánicos , Humanos , Masculino
5.
J Neurophysiol ; 111(2): 313-22, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24089399

RESUMEN

Recent studies have demonstrated that human quiet standing is a multijoint movement, whereby the central nervous system (CNS) is required to deal with dynamic interactions among the joints to achieve optimal motor performance. The purpose of this study was to investigate how the CNS deals with such interjoint interaction during quiet standing by examining the relationship between the kinetics (torque) and kinematics (angular acceleration) within the multi-degree of freedom system. We modeled quiet standing as a double-link inverted pendulum involving both ankle and hip joints and conducted an "induced acceleration analysis." We found that the net ankle and hip torques induced angular accelerations of comparable magnitudes to the ankle (3.8 ± 1.4°/s(2) and 3.3 ± 1.2°/s(2)) and hip (9.1 ± 3.2°/s(2) and 10.5 ± 3.5°/s(2)) joints, respectively. Angular accelerations induced by the net ankle and hip torques were modulated in a temporally antiphase pattern to one another in each of the two joints. These quantitative and temporal relationships allowed the angular accelerations induced by the two net torques to countercompensate one another, thereby substantially (∼70%) reducing the resultant angular accelerations of the individual joints. These results suggest that, by taking advantage of the interjoint interaction, the CNS prevents the net torques from producing large amplitudes of the resultant angular accelerations when combined with the kinematic effects of all other torques in the chain.


Asunto(s)
Aceleración , Articulación del Tobillo/fisiología , Articulación de la Cadera/fisiología , Modelos Biológicos , Adulto , Fenómenos Biomecánicos , Humanos , Masculino , Restricción Física , Torque
6.
J Strength Cond Res ; 24(2): 382-8, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20124792

RESUMEN

This study aimed to examine the transient effect of core stability exercises on the motion of the center of pressure (COP) during quiet standing. Seventeen healthy young adults (7 women and 10 men) were required to perform elbow-toe and hand-heel exercises for 30 seconds in both cases. Before and 1 minute after the execution of the 2 exercises, the subjects repeated 30 seconds of quiet standing with eyes closed 3 times on a force platform with intervals of 10 seconds between trials. The intervention of the 2 exercises induced significant decreases in the maximal range of mediolateral sway (34.7 +/- 7.0 mm to 30.2 +/- 6.1 mm, p = 0.0001), standard deviation of mediolateral sway (6.4 +/- 1.2 mm to 5.8 +/- 1.0 mm, p = 0.0006), the mean speed of anteroposterior sway (14.1 +/- 2.5 mm per second to 13.2 +/- 2.3 mm per second, p = 0.004), mean speed of mediolateral sway (22.8 +/- 2.8 mm per second to 20.9 +/- 2.3 mm per second, p = 0.004), sway speed (29.3 +/- 3.9 mm per second to 27.0 +/- 3.2 mm per second, p = 0.002), and sweep speed (73.2 +/- 23.4 mm per second to 62.0 +/- 19.7 mm per second, p = 0.005) of the COP trajectory, calculated from the force platform data. This result indicates that the practice of core stability exercises transiently decreases the area of the COP trajectory and its mediolateral and total excursions during quiet standing with the eyes closed. Performing core stability exercises as part of warm-up programs may be useful for temporarily improving postural control during standing in main exercise programs.


Asunto(s)
Músculos Abdominales/fisiología , Ejercicio Físico/fisiología , Músculo Esquelético/fisiología , Equilibrio Postural/fisiología , Femenino , Humanos , Masculino , Reproducibilidad de los Resultados , Adulto Joven
7.
Exp Brain Res ; 196(4): 537-44, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19506843

RESUMEN

Human bipedal stance is often modeled as a single inverted pendulum that pivots at the ankle joints in the sagittal plane. Because the center of body mass is usually maintained in front of the ankle joints, ankle extensor torque is continuously required to prevent the body from falling. During quiet standing, both passive and active mechanisms contribute to generate the ankle extensor torque counteracting gravity. This study aimed to investigate the active stabilization mechanism in more detail. Eight healthy subjects were requested to stand quietly on three different surfaces of 1) toes-up, 2) level, and 3) toes-down. Surface electromyogram (EMG) was recorded from the medial head of the gastrocnemius (MG), soleus (SOL), and tibialis anterior muscles. Inclination angle of the body was simultaneously measured. As a result, we found that EMG activities of MG and SOL were lowest during the toes-up standing and highest during the toes-down, indicating that increased (decreased) passive contribution required less (more) extensor torque generated by active muscle contraction. Frequency domain analysis also revealed that sway-related modulation of the ankle extensor activity (0.12-4.03 Hz) was unchanged among the three foot inclinations. On the other hand, isometric contraction strength of these muscles increased as the slope declined (toes-up < level < toes-down). These results support the idea that by regulating the isometric contraction strength, the CNS maintains a constant level of muscle tone and resultant ankle stiffness irrespective of the passive contribution. Such control scheme would be crucial when we consider the low bandwidth of the intermittent controller.


Asunto(s)
Tobillo/fisiología , Contracción Isométrica/fisiología , Tono Muscular/fisiología , Músculo Esquelético/fisiología , Equilibrio Postural/fisiología , Adulto , Tobillo/inervación , Articulación del Tobillo/inervación , Articulación del Tobillo/fisiología , Fenómenos Biomecánicos/fisiología , Electromiografía , Retroalimentación/fisiología , Marcha/fisiología , Sensación de Gravedad/fisiología , Humanos , Masculino , Fuerza Muscular/fisiología , Músculo Esquelético/inervación , Rango del Movimiento Articular/fisiología , Dedos del Pie/fisiología , Torque , Soporte de Peso/fisiología
8.
Neurosci Lett ; 450(1): 27-31, 2009 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-19027828

RESUMEN

Human quiet stance is often modeled as a single-link inverted pendulum pivoting only around the ankle joints in the sagittal plane. However, several recent studies have shown that movement around the hip joint cannot be negligible, and the body behaves like a double-link inverted pendulum. The purpose of this study was to examine how the hip motion affects the body kinematics in the sagittal plane during quiet standing. Ten healthy subjects were requested to keep a quiet stance for 30s on a force platform. The angular displacements of the ankle and hip joints were measured using two highly sensitive CCD laser sensors. By taking the second derivative of the angular displacements, the angular accelerations of both joints were obtained. As for the angular displacements, there was no clear correlation between the ankle and hip joints. On the other hand, the angular accelerations of both joints were found to be modulated in a consistent anti-phase pattern. Then we estimated the anterior-posterior (A-P) acceleration of the center of mass (CoM) as a linear summation of the angular acceleration data. Simultaneously, we derived the actual CoM acceleration by dividing A-P share force by body mass. When we estimated CoM acceleration using only the angular acceleration of the ankle joint under the assumption that movement of the CoM is merely a scaled reflection of the motion of the ankle, it was largely overestimated as compared to the actual CoM acceleration. Whereas, when we take the angular acceleration of the hip joint into the calculation, it showed good coincidence with the actual CoM acceleration. These results indicate that the movement around the hip joint has a substantial effect on the body kinematics in the sagittal plane even during quiet standing.


Asunto(s)
Equilibrio Postural , Postura , Adulto , Algoritmos , Articulación del Tobillo/fisiología , Fenómenos Biomecánicos , Articulación de la Cadera/fisiología , Humanos , Cinética , Masculino , Modelos Biológicos , Movimiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA