Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
ACS Macro Lett ; 13(9): 1179-1184, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39171924

RESUMEN

Nanowhiskers in a colloidal dispersion are known to form chiral nematic liquid crystals (CNLC), as seen in a cellulose nanowhisker or so-called cellulose nanocrystal and chitin nanowhisker. In our related work, we clarified that once the thus-created chitin nanowhiskers with surface modified by chitosan (CTWK-CS) in CNLC phase were wet-spun, we could directly obtain anisotropic microfibers containing the highly ordered CTWK-CS. This drastic structural transformation from CNLC to anisotropic microfibers might relate to several important stages, i.e., stage (i) is the alignment of CTWK-CS initiated by a specific concentration and flow to create aggregation in the CNLC state, stage (ii) is the coagulation of CTWK-CS in CNLC to transform to microfibers, and stage (iii) is the drying of the thus-extruded microfibers to allow CTWK-CS alignment. The present work sets up the experimental systems simulating stages (i) and (iii) to reveal the orientational behavior of CTWK-CS and the structural evolution, respectively, by synchrotron 2D WAXD measurement. In stage (i), the high degree of the parallel alignments of CTWK-CS with the chain axis oriented along the flow direction of the colloidal dispersions confirms that the flow and concentration synergistically controlled CTWK-CS alignment. In contrast, for stage (iii), the poor c-axial orientation of CTWK-CS in as-spun wet microfibers gradually changed to the high degree of c-axial orientation along the fiber direction during drying process, indicating a reorientation of CTWK-CS along with dehydration. The present study declares an in situ observation of the direct wet spinning of nanowhiskers about their remarkable alignments in the sheared colloidal dispersions (stage (i)) and their random-to-high reorientation during the drying process of the as-spun wet microfiber (stage (iii)).

2.
Small ; 20(40): e2401987, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38805737

RESUMEN

Alternative strategies to design sustainable-element-based electrocatalysts enhancing oxygen evolution reaction (OER) kinetics are demanded to develop affordable yet high-performance water-electrolyzers for green hydrogen production. Here, it is demonstrated that the spontaneous-spin-polarized 2D π-d conjugated framework comprising abundant elements of nickel and iron with a ratio of Ni:Fe = 1:4 with benzenehexathiol linker (BHT) can improve OER kinetics by its unique electronic property. Among the bimetallic NiFex:y-BHTs with various ratios with Ni:Fe = x:y, the NiFe1:4-BHT exhibits the highest OER activity. The NiFe1:4-BHT shows a specific current density of 140 A g-1 at the overpotential of 350 mV. This performance is one of the best activities among state-of-the-art non-precious OER electrocatalysts and even comparable to that of the platinum-group-metals of RuO2 and IrO2. The density functional theory calculations uncover that introducing Ni into the homometallic Fe-BHT (e.g., Ni:Fe = 0:1) can emerge a spontaneous-spin-polarized state. Thus, this material can achieve improved OER kinetics with spin-polarization which previously required external magnetic fields. This work shows that a rational design of 2D π-d conjugated frameworks can be a powerful strategy to synthesize promising electrocatalysts with abundant elements for a wide spectrum of next-generation energy devices.

3.
Angew Chem Int Ed Engl ; 63(9): e202318181, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38179847

RESUMEN

Heterostructures of two-dimensional materials realise novel and enhanced physical phenomena, making them attractive research targets. Compared to inorganic materials, coordination nanosheets have virtually infinite combinations, leading to tunability of physical properties and are promising candidates for heterostructure fabrication. Although stacking of coordination materials into vertical heterostructures is widely reported, reports of lateral coordination material heterostructures are few. Here we show the successful fabrication of a seamless lateral heterojunction showing diode behaviour, by sequential and spatially limited immersion of a new metalladithiolene coordination nanosheet, Zn3 BHT, into aqueous Cu(II) and Fe(II) solutions. Upon immersion, the Zn centres in insulating Zn3 BHT are replaced by Cu or Fe ions, resulting in conductivity. The transmetallation is spatially confined, occurring only within the immersed area. We anticipate that our results will be a starting point towards exploring transmetallation of various two-dimensional materials to produce lateral heterojunctions, by providing a new and facile synthetic route.

4.
Langmuir ; 39(49): 17879-17888, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38016082

RESUMEN

In this study, we investigated the effect of morphology on the gas-transport properties of a poly(ether-block-amide) (PEBA) multiblock copolymer. We annealed the copolymer samples and varied the annealing temperature to evaluate the influence of changes in the microstructure on the gas transport properties of PEBA. In addition, we used time-resolved attenuated total reflection Fourier transform infrared spectroscopy to evaluate the diffusion coefficient of CO2 in PEBA based on the Fickian model. The effect of the annealing temperature on the microphase-separated structure of the multiblock copolymer is discussed in detail. Furthermore, the gas diffusivity was significantly affected by the purity of the soft domains. The annealed sample demonstrated a 38% increase in CO2 permeability while maintaining a high CO2/N2 permselectivity of approximately 53. The findings of this study provide valuable insight into the design and optimization of PEBA membranes for gas separation applications.

5.
Small ; 18(33): e2202861, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35766308

RESUMEN

Reversible multielectron-transfer materials are of considerable interest because of the potential impact to advance present electrochemical energy storage technology by boosting energy density. To date, a few oxide-based materials can reach an electron-transfer number per metal-cation (eM ) larger than 2 upon a (de)intercalation mechanism. However, these materials suffer from degradation due to irreversible rearrangements of the cation-oxygen bonds, and are based on precious metals, for example, Ir and Ru. Hence, a design of the non-oxide-based reversible multielectron-transfer materials with abundant elements can provide a promising alternative. Herein, it is demonstrated that the bis(diimino)copper framework can show eM  = 3.5 with cation/anion co-redox mechanism together with a dual-ion mechanism. In this study, the role of the cation-anion interactions is unveiled by using an experiment/theory collaboration applied to a series of the model non-oxide abundant electrode systems based on different metal-nitrogen bonds. These models provide designer multielectron-transfer due to the tunable π-d conjugated electronic structures. It is found that the Cu-nitrogen bonds show a unique reversible rearrangement upon Li-intercalation, and this process responds to acquire a significant reversible multielectron-transfer. This work provides new insights into the affordable multielectron-transfer electrodes and uncovers an alternative strategy to advance the electrochemical energy storage reactions.


Asunto(s)
Litio , Metales , Cobre/química , Electrodos , Nitrógeno
6.
Mater Sci Eng C Mater Biol Appl ; 135: 112686, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35581096

RESUMEN

As an emerging additive manufacturing (AM) technique, melt electrospinning writing (MEW) is used to fabricate three-dimensional (3D) submicron filament-based scaffolds with adjustable pore size and customized structure for bone regeneration. Poly(L-lactic acid) (PLLA) scaffold with excellent biodegradability and biocompatibility is first successfully manufactured using our self-assembled MEW device. However, the ultralow cell affinity and poor bioactivity severely hamper their practical applications in bone tissue engineering. These issues are caused by the severe inherent biologically inert, hydrophobicity as well as the smooth surface of the MEW PLLA filaments. In this study, a green and robust alkaline method is applied to modify the scaffold surface and to improve the bioactivity of the MEW PLLA scaffold. Without deterioration in mechanical property but robust surface hydrophilicity, the optimal MEW PLLA scaffold shows promoted surface roughness, enhanced filament tensile modulus (~ 2 folds of the as-prepared sample), and boosted crystallizability (ultrahigh WAXD intensity). Moreover, after being cultured with KUSA-A1 cells, the 0.5 M NaOH, 2 h treated MEW PLLA scaffold exhibits higher osteoinductive ability and increased immature bone tissue amounts (3 times of controlled scaffold). Thus, the flexible surface functionalization by the specific alkaline treatment was found to be an effective method for the preparation of bioactivated MEW PLLA scaffolds with promoted bone regeneration.


Asunto(s)
Poliésteres , Andamios del Tejido , Regeneración Ósea , Huesos , Interacciones Hidrofóbicas e Hidrofílicas , Poliésteres/química , Poliésteres/farmacología , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
7.
Adv Mater ; 34(13): e2106204, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35040527

RESUMEN

Coordination nanosheets are an emerging class of 2D, bottom-up materials having fully π-conjugated, planar, graphite-like structures with high electrical conductivities. Since their discovery, great effort has been devoted to expand the variety of coordination nanosheets; however, in most cases, their low crystallinity in thick films hampers practical device applications. In this study, mixtures of nickel and copper ions are employed to fabricate benzenehexathiolato (BHT)-based coordination nanosheet films, and serendipitously, it is found that this heterometallicity preferentially forms a structural phase with improved film crystallinity. Spectroscopic and scattering measurements provide evidence for a bilayer structure with in-plane periodic arrangement of copper and nickel ions with the NiCu2 BHT formula. Compared with homometallic films, heterometallic films exhibit more crystalline microstructures with larger and more oriented grains, achieving higher electrical conductivities reaching metallic behaviors. Low dependency of Seebeck coefficient on the mixing ratio of nickel and copper ions supports that the large variation in the conductivity data is not caused by change in the intrinsic properties of the films. The findings open new pathways to improve crystallinity and to tune functional properties of 2D coordination nanosheets.

8.
Soft Matter ; 17(31): 7396-7407, 2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34318868

RESUMEN

We report here spontaneous dewetting of a spin-coated, ultra-thin film of a sphere-forming block copolymer (BCP) upon thermal annealing, and that the dewetting resulted in the formation of plateau-shaped islands with a constant thickness consistent with the thickness of a monolayer, in which the spherical microdomains are regularly ordered two-dimensionally in a deformed hexagonal lattice. Thus, the spontaneous dewetting was ascribed to a mismatch between the initial spin-coated film thickness with respect to the monolayer thickness. Such dewetting of sphere-forming BCPs is considered to be deterministic compared to the cases of lamella- and cylinder-forming BCPs, as incommensuration in thickness is avoided by attaining perpendicular orientation without dewetting. We further quantitatively examined the ordering regularity of spherical microdomains in the dewetted monolayer islands to clarify the effect of confinement on sphere ordering. The degree of deformation of the hexagonal lattice was found to have an increasing tendency as a function of the degree of the deformation of the dewetted islands (the island shape), irrespective of the size of the island. Namely, islands with almost round shapes exhibit a well-ordered arrangement of the spherical microdomains in a perfect hexagonal lattice. Another notable finding is that the regular ordering of the spherical microdomains was found to be spoiled in the vicinity of the edge of the island. In other words, the spherical microdomains were well-ordered in a hexagonal lattice far from the edge of the island, while they were not regularly ordered in the vicinity of the edge, which may be due to mismatch between the curvature of the island's perimeter and the polygonal shape of ordered sphere grains.

9.
Langmuir ; 36(45): 13583-13590, 2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-33147035

RESUMEN

Morphological control of C60 fullerene using liquefied porphyrins (1 and 2) as the host matrices was explored. Slow evaporation of the solvent of the equimolar mixture of porphyrin and C60 in toluene afforded the porphyrin/C60 composite with a 3:1 molar ratio. The stoichiometric binding behaviors suggest that specific porphyrin-C60 interactions operate the formation of the porphyrin/C60 composites, as corroborated by spectroscopic and thermal properties, and glazing-incidence wide-angle X-ray diffraction. Under the bulk conditions, the conventional thermodynamic advantage of multiple binding cooperativity for molecular recognition is unlikely to explain the stoichiometric binding behaviors. Instead, we propose a size-matching effect on the porphyrin-C60 interaction in the bulk porphyrin matrices, i.e., "supramolecular solvation". The glassy nature of the porphyrin matrices was transmitted to C60 through the specific interaction, and the porphyrin/C60 composites adopted glassy states at room temperature.

10.
Inorg Chem ; 59(15): 10604-10610, 2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32585090

RESUMEN

Bis(diimino)metal coordination frameworks (MDI, M = transition metal), which are a class of metal organic frameworks with two-dimensional anisotropy, high electric conductivity, and redox activity, are attractive platforms for tailoring electrochemical properties by introducing a heterometallic composition. In this study, we synthesized heterometallic CoxNi1-xDI coordination frameworks for electrochemical energy storage applications and investigated their electrochemical properties by experimental and theoretical techniques. Ni atoms were embedded into CoDI, and the crystal structure of CoxNi1-xDI was modified, especially along the interlayer axis, which activated the kinetically impeded redox reactions accompanied by PF6- insertion/extraction. Furthermore, upon charge/discharge with Li+ transport, CoxNi1-xDI with a specific composition exhibited higher specific capacity (248 mAh g-1) than CoDI and NiDI in the potential window of 1.0-3.5 V versus Li+/Li. Density functional theory calculations indicate that the energy levels of the antibonding orbitals around the metals and interlayer spaces are important factors in tailoring the electrochemical properties of CoxNi1-xDI.

11.
J Biomed Mater Res A ; 108(10): 2005-2014, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32323458

RESUMEN

Because acellular vascular xenografts induce an immunological reaction through macrophage infiltration, they are conventionally crosslinked with glutaraldehyde (GA). However, the GA crosslinking reaction inhibits not only the host immune reaction around the graft but also the graft's enzymatic degradability, which is one of the key characteristics of acellular grafts that allow them to be replaced by host tissue. In this study, we used an 8-arm polyethylene glycol (PEG) to successfully suppress macrophage infiltration, without eliminating graft degradation. Decellularized ostrich carotid arteries were modified with GA or N-hydroxysuccinimide-activated 8-arm PEG (8-arm PEG-NHS), which has a molecular weight of 17 kDa. To evaluate the enzymatic degradation in vitro, the graft was immersed in a collagenase solution for 12 hr. The 8-arm PEG-modified graft was degraded to the same extent as the unmodified graft, but the GA-modified graft was not degraded. The graft was transplanted into rat subcutaneous tissue for up to 8 weeks. Although CD68-positive cells accumulated in the unmodified graft, they did not infiltrate into either modified graft. However, the GA-modified grafts calcified, but the 8-arm PEG-modified graft did not calcify after transplantation. These data suggested that 8-arm PEG-NHS is a promising modification agent for biodegradable vascular xenografts, to suppress acute macrophage infiltration only.


Asunto(s)
Implantes Absorbibles , Prótesis Vascular , Glutaral/química , Macrófagos/citología , Polietilenglicoles/química , Implantes Absorbibles/efectos adversos , Animales , Prótesis Vascular/efectos adversos , Arterias Carótidas/química , Reactivos de Enlaces Cruzados/química , Macrófagos/inmunología , Masculino , Ratas Sprague-Dawley , Struthioniformes
12.
Chem Sci ; 10(20): 5218-5225, 2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-31217942

RESUMEN

The construction of two-dimensional metal complex materials is fascinating because of the structural and functional diversity of these materials. Previously, we have reported the synthesis of electroconductive nickelladithiolene (NiDT) and palladadithiolene (PdDT) nanosheets using benzenehexathiol (BHT). Down the group from Ni, Pd to Pt, there is a distinct positive shift in the reduction potential; as a result, it becomes synthetically more challenging to stabilize Pt2+ than to form metallic Pt(0) in the presence of BHT as a reducing agent. Herein, a novel synthetic strategy for the preparation of platinadithiolene nanosheet (PtDT) using a dibutyltin-protected BHT ligand is reported, leading to transmetallation in the presence of dioxygen. Both free-standing stacked sheets and atomic layer sheets were obtained and characterized by microscopic techniques such as AFM, SEM, and TEM. To study the morphology of the sheets and determine their charge neutrality, X-ray photoelectron (XP) and infrared (IR) spectroscopic techniques were used. Powder X-ray diffraction analysis of the multilayer PtDT indicates a half-way slipped hexagonal configuration in the P3[combining macron]1m space group. The band structure of this PtDT exhibits a band gap at the Fermi level, which is different from that of NiDT in the staggered configuration, and a Dirac gap, indicating the possibility of 2D topological insulation at room temperature. PtDT is insulating but chemically activated by oxidation with I2 to increase the conductivity by more than 106 folds up to 0.39 S cm-1. The MDT sheets exhibit electrocatalytic activity for the hydrogen evolution reaction, and the activity order is NiDT < PdDT < PtDT.

13.
Materials (Basel) ; 12(11)2019 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-31185630

RESUMEN

The nucleating effect of silk fibroin nano-disc (SFN) on the crystallization behavior of poly(L-lactic acid) (PLLA) was investigated by simultaneous synchrotron small- and wide-angle X-ray scattering measurements. For the isothermal crystallization at 110 °C from the melt, the induction period of the PLLA specimens containing 1% SFN was reduced compared to that of the neat specimens, indicating the acceleration of the nucleation of PLLA. The final degree of crystallinity was also increased, and the crystallization half-time was decreased, which indicates that the overall crystallization process was accelerated. Furthermore, the final value of the crystallite size (the lateral size of the crystalline lamella) was slightly lower for the specimens containing 1% SFN than that for the PLLA neat specimen, although the crystallites started growing much earlier. However, it was found that there was no effect of SFN on the growth rate of the crystallite size. The lamellar thickening process was also accelerated with a clear overshooting phenomenon with the inclusion of 1% SFN. As for the polymorphism, the α' phase is dominant with about 96%, but a small amount of the α phase (4%) is found to exist. It was found that the SFN can also accelerate the formation of the minor α phase as well as the major α' phase.

14.
Chemistry ; 25(30): 7322-7329, 2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-30900305

RESUMEN

Quadrupolar interactions of porphyrin bearing two pentafluorophenylethynyl terminals (1) drove the formation of a successive one-dimensional staircase structure, i.e., J-aggregates, to yield millimeter-length needles with a single-crystalline character in methylcyclohexane solution. In contrast, π-stacked interactions of porphyrin bearing two nonfluorinated phenyl terminals (2) formed no aggregates in solution. A spin-cast film of 1 also showed bathochromic shift of the Soret and Q bands, indicating the formation of J-aggregates. The molecular arrangement of the J-aggregates was revealed by microbeam glazing-incidence wide-angle X-ray diffraction (GIWAXD), and was in good agreement with the optimized structure generated by density functional theory (DFT) calculations.

15.
ACS Appl Mater Interfaces ; 11(3): 2730-2733, 2019 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-29508605

RESUMEN

Graphdiyne (GDY) comprises an important class in functional covalent organic nanosheets based on carbon-carbon bond formation, and recent focus has collected in the expansion of its variations. Here we report on the synthesis of a GDY analogue, TP-GDY, which has triphenylene as the aromatic core. Our liquid/liquid interfacial synthesis for GDY ( J. Am. Chem. Soc. 2017, 139, 3145) was modified for hexaethynyltriphenylene monomer to afford a TP-GDY film with a free-standing morphology, a smooth texture, a domain size of >1 mm, and a thickness of 220 nm. Resultant TP-GDY is characterized by series of microscopies, spectroscopies, and thermogravimetric and gas adsorption analyses.

16.
ACS Omega ; 3(4): 4466-4474, 2018 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-30023894

RESUMEN

Expanded π-systems with a narrow highest occupied molecular orbital-lowest unoccupied molecular orbital band gap encounter deactivation of excitons due to the "energy gap law" and undesired aggregation. This dilemma generally thwarts the near-infrared (NIR) luminescence of organic π-systems. A sophisticated cofacially stacked π-system is known to involve exponentially tailed disorder, which displays exceptionally red-shifted fluorescence even as only a marginal emission component. Enhancement of the tail-state fluorescence might be advantageous to achieve NIR photoluminescence with an expected collective light-harvesting antenna effect as follows: (i) efficient light-harvesting capacity due to intense electronic absorption, (ii) a long-distance exciton migration into the tail state based on a high spatial density of the chromophore site, and (iii) substantial transmission of NIR emission to circumvent the inner filter effect. Suppression of aggregation-induced quenching of fluorescence could realize collective light-harvesting antenna for NIR-luminescence materials. This study discloses an enhanced tail-state NIR fluorescence of a self-standing porphyrin film at 1138 nm with a moderate quantum efficiency based on a fully π-conjugated porphyrin that adopts an amorphous form, called "porphyrin glass".

17.
Angew Chem Int Ed Engl ; 57(29): 8886-8890, 2018 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-29675949

RESUMEN

The metallically conductive bis(diimino)nickel framework (NiDI), an emerging class of metal-organic framework (MOF) analogues consisting of two-dimensional (2D) coordination networks, was found to have an energy storage principle that uses both cation and anion insertion. This principle gives high energy led by a multielectron transfer reaction: Its specific capacity is one of the highest among MOF-based cathode materials in rechargeable energy storage devices, with stable cycling performance up to 300 cycles. This mechanism was studied by a wide spectrum of electrochemical techniques combined with density-functional calculations. This work shows that a rationally designed material system of conductive 2D coordination networks can be promising electrode materials for many types of energy devices.

18.
ACS Biomater Sci Eng ; 4(8): 2748-2757, 2018 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-33435001

RESUMEN

Spider silk features extraordinary toughness in combination with great biocompatibility and biodegradability, fascinating researchers to prepare artificial silk fibers inspired from the natural art of spinning. In addition to C- and N-terminal domain, a repeat unit from Lactrodectus mactans spider eggcase silks displays substantial sequence conservation across species. Herein, we attempt to spin the engineered tubuliform spidroin 1 (eTuSp1) by microfluidics in a mode of modular assembly comprising the genetic construction, micellar formation, phase separation, and further solidification. Based on the conserved gene sequence, a unique amphiphilic behavior was predicted and then verified by combined techniques of dynamic light scattering, transmission electron microscopy, and synchrotron radiation X-ray diffraction to reveal the formation of micelle-like structure. Through the employ of biomimetic microfluidic devices, desolvation of eTuSp1 was simplified by the nonsolvent induced phase separation in place of the conventional ions exchange and acidification. Both controlled by protein concentrations and flow rate ratios, silk fibers were assembled similar to these reported in other studies of spheres/spherical aggregates observed as intermediates. Because of the applied shear and elongational flow in microfluidic systems, these intermediates were forced to form fibrillar assemblies accompanied by the conformational transformation from α-helix to ß-sheet. The resultant mechanical properties were investigated in response to the change of secondary structures and morphologies during spinning process. This work studies the sequence-structure-property relationship, providing comprehensive and systematic insight into the design rational on the preparation of artificial silk fibers from microscale to macroscale.

19.
Chem Commun (Camb) ; 53(77): 10703-10706, 2017 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-28913537

RESUMEN

A metal-lustrous self-standing film, named "porphyrin foil", was formed from a glass-forming polymeric porphyrin. The amorphous glass nature of the porphyrin foil played a key role in spontaneously producing a smooth surface. Its sharp contrast in intense absorption and specular reflection of light at each wavelength provided a brilliant metallic lustre.

20.
Chemistry ; 23(35): 8443-8449, 2017 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-28419580

RESUMEN

A liquid/liquid interfacial synthesis is employed, for the first time, to synthesize a covalent two-dimensional polymer nanosheet. Copper-catalyzed azide-alkyne cycloaddition (CuAAC) between a three-way terminal alkyne and azide at a water/dichloromethane interface generates a 1,2,3-triazole-linked nanosheet. The resultant nanosheet, with a flat and smooth texture, has a maximum domain size of 20 µm and minimum thickness of 5.3 nm. The starting monomers in the organic phase and the copper catalyst in the aqueous phase can only meet at the liquid/liquid interface as a two-dimensional reaction space; this allows them to form the two-dimensional polymer. The robust triazole linkage generated by irreversible covalent-bond formation allows the nanosheet to resist hydrolysis under both acidic and alkaline conditions, and to endure pyrolysis up to more than 300 °C. The coordination ability of the triazolyl group enables the nanosheet to act as a reservoir for metal ions, with an affinity order of Pd2+ >Au3+ >Cu2+ .

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA