RESUMEN
PURPOSE: G-CSF enhances colon cancer development. This study defines the prevalence and effects of increased G-CSF signaling in human colon cancers and investigates G-CSF inhibition as an immunotherapeutic strategy against metastatic colon cancer. EXPERIMENTAL DESIGN: Patient samples were used to evaluate G-CSF and G-CSF receptor (G-CSFR) levels by IHC with sera used to measure G-CSF levels. Peripheral blood mononuclear cells were used to assess the rate of G-CSFR+ T cells and IFNγ responses to chronic ex vivo G-CSF. An immunocompetent mouse model of peritoneal metastasis (MC38 cells in C57Bl/6J) was used to determine the effects of G-CSF inhibition (αG-CSF) on survival and the tumor microenvironment (TME) with flow and mass cytometry. RESULTS: In human colon cancer samples, the levels of G-CSF and G-CSFR are higher compared to normal colon tissues from the same patient. High patient serum G-CSF is associated with increases in markers of poor prognosis, (e.g., VEGF, IL6). Circulating T cells from patients express G-CSFR at double the rate of T cells from controls. Prolonged G-CSF exposure decreases T cell IFNγ production. Treatment with αG-CSF shifts both the adaptive and innate compartments of the TME and increases survival (HR, 0.46; P = 0.0237) and tumor T-cell infiltration, activity, and IFNγ response with greater effects in female mice. There is a negative correlation between serum G-CSF levels and tumor-infiltrating T cells in patient samples from women. CONCLUSIONS: These findings support G-CSF as an immunotherapeutic target against colon cancer with greater potential benefit in women.
Asunto(s)
Neoplasias del Colon , Factor Estimulante de Colonias de Granulocitos , Humanos , Femenino , Ratones , Animales , Leucocitos Mononucleares , Linfocitos T , Receptores de Factor Estimulante de Colonias de Granulocito/fisiología , Neoplasias del Colon/tratamiento farmacológico , Inmunoterapia , Microambiente TumoralRESUMEN
Granulocyte colony-stimulating factor receptor (GCSFR) is a critical regulator of granulopoiesis. Studies have shown significant upregulation of GCSFR in a variety of cancers and cell types and have recognized GCSFR as a cytokine receptor capable of influencing both myeloid and non-myeloid immune cells, supporting pro-tumoral actions. This systematic review aims to summarize the available literature examining the mechanisms that control GCSFR signaling, regulation, and surface expression with emphasis on how these mechanisms may be dysregulated in cancer. Experiments with different cancer cell lines from breast cancer, bladder cancer, glioma, and neuroblastoma are used to review the biological function and underlying mechanisms of increased GCSFR expression with emphasis on actions related to tumor proliferation, migration, and metastasis, primarily acting through the JAK/STAT pathway. Evidence is also presented that demonstrates a differential physiological response to aberrant GCSFR signal transduction in different organs. The lifecycle of the receptor is also reviewed to support future work defining how this signaling axis becomes dysregulated in malignancies.
RESUMEN
Colorectal cancer is the 2nd leading cause of cancer-related deaths in the world. The mechanisms underlying CRC development, progression, and resistance to treatment are complex and not fully understood. The immune response in the tumor microenvironment has been shown to play a significant role in many cancers, including colorectal cancer. Colony-stimulating factor 3 (CSF3) has been associated with changes to the immune environment in colorectal cancer animal models. We hypothesized that CSF3 signaling would correlate with pro-tumor tumor microenvironment changes associated with immune infiltrate and response. We utilized publicly available datasets to guide future mechanistic studies of the role CSF3 and its receptor (CSF3R) play in colorectal cancer development and progression. Here, we use bioinformatics data and mRNA from patients with colon (n = 242) or rectal (n = 92) cancers, obtained from The Cancer Genome Atlas Firehose Legacy dataset. We examined correlations of CSF3 and CSF3R expression with patient demographics, tumor stage and consensus molecular subtype classification. Gene expression correlations, cell type enrichment, Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data scores and Gene Ontology were used to analyze expression of receptor and ligand, tumor microenvironment infiltration of immune cells, and alterations in biological pathways. We found that CSF3 and CSF3R expression is highest in consensus molecular subtype 1 and consensus molecular subtype 4. Ligand and receptor expression are also correlated with changes in T cell and macrophage signatures. CSF3R significantly correlates with a large number of genes that are associated with poor colorectal cancer prognosis.