Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
3.
Nat Commun ; 14(1): 4035, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37419977

RESUMEN

Initiating drug use during adolescence increases the risk of developing addiction or other psychopathologies later in life, with long-term outcomes varying according to sex and exact timing of use. The cellular and molecular underpinnings explaining this differential sensitivity to detrimental drug effects remain unexplained. The Netrin-1/DCC guidance cue system segregates cortical and limbic dopamine pathways in adolescence. Here we show that amphetamine, by dysregulating Netrin-1/DCC signaling, triggers ectopic growth of mesolimbic dopamine axons to the prefrontal cortex, only in early-adolescent male mice, underlying a male-specific vulnerability to enduring cognitive deficits. In adolescent females, compensatory changes in Netrin-1 protect against the deleterious consequences of amphetamine on dopamine connectivity and cognitive outcomes. Netrin-1/DCC signaling functions as a molecular switch which can be differentially regulated by the same drug experience as function of an individual's sex and adolescent age, and lead to divergent long-term outcomes associated with vulnerable or resilient phenotypes.


Asunto(s)
Anfetamina , Dopamina , Femenino , Ratones , Masculino , Animales , Anfetamina/farmacología , Dopamina/metabolismo , Netrina-1/metabolismo , Receptor DCC/genética , Receptor DCC/metabolismo , Axones/metabolismo
4.
bioRxiv ; 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-38196637

RESUMEN

Single nucleus RNA-sequencing is critical in deciphering tissue heterogeneity and identifying rare populations. However, current high throughput techniques are not optimized for rare target populations and require tradeoffs in design due to feasibility. We provide a novel snRNA pipeline, MulipleXed Population Selection and Enrichment snRNA-sequencing (XPoSE-seq), to enable targeted snRNA-seq experiments and in-depth transcriptomic characterization of rare target populations while retaining individual sample identity.

5.
J Biol Chem ; 297(3): 100993, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34298019

RESUMEN

Loss-of-function mutations in progranulin (GRN) are a major genetic cause of frontotemporal dementia (FTD), possibly due to loss of progranulin's neurotrophic and anti-inflammatory effects. Progranulin promotes neuronal growth and protects against excitotoxicity and other forms of injury. It is unclear if these neurotrophic effects are mediated through cellular signaling or through promotion of lysosomal function. Progranulin is a secreted proprotein that may activate neurotrophic signaling through cell-surface receptors. However, progranulin is efficiently trafficked to lysosomes and is necessary for maintaining lysosomal function. To determine which of these mechanisms mediates progranulin's protection against excitotoxicity, we generated lentiviral vectors expressing progranulin (PGRN) or lysosome-targeted progranulin (L-PGRN). L-PGRN was generated by fusing the LAMP-1 transmembrane and cytosolic domains to the C-terminus of progranulin. L-PGRN exhibited no detectable secretion, but was delivered to lysosomes and processed into granulins. PGRN and L-PGRN protected against NMDA excitotoxicity in rat primary cortical neurons, but L-PGRN had more consistent protective effects than PGRN. L-PGRN's protective effects were likely mediated through the autophagy-lysosomal pathway. In control neurons, an excitotoxic dose of NMDA stimulated autophagy, and inhibiting autophagy with 3-methyladenine reduced excitotoxic cell death. L-PGRN blunted the autophagic response to NMDA and occluded the protective effect of 3-methyladenine. This was not due to a general impairment of autophagy, as L-PGRN increased basal autophagy and did not alter autophagy after nutrient starvation. These data show that progranulin's protection against excitotoxicity does not require extracellular progranulin, but is mediated through lysosomes, providing a mechanistic link between progranulin's lysosomal and neurotrophic effects.


Asunto(s)
Lisosomas/metabolismo , Neuronas/metabolismo , Progranulinas/administración & dosificación , Receptores de Glutamato/efectos de los fármacos , Animales , Ratas , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores
6.
Nucleic Acids Res ; 48(17): 9550-9570, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32810208

RESUMEN

Genomic enhancer elements regulate gene expression programs important for neuronal fate and function and are implicated in brain disease states. Enhancers undergo bidirectional transcription to generate non-coding enhancer RNAs (eRNAs). However, eRNA function remains controversial. Here, we combined Assay for Transposase-Accessible Chromatin using Sequencing (ATAC-Seq) and RNA-Seq datasets from three distinct neuronal culture systems in two activity states, enabling genome-wide enhancer identification and prediction of putative enhancer-gene pairs based on correlation of transcriptional output. Notably, stimulus-dependent enhancer transcription preceded mRNA induction, and CRISPR-based activation of eRNA synthesis increased mRNA at paired genes, functionally validating enhancer-gene predictions. Focusing on enhancers surrounding the Fos gene, we report that targeted eRNA manipulation bidirectionally modulates Fos mRNA, and that Fos eRNAs directly interact with the histone acetyltransferase domain of the enhancer-linked transcriptional co-activator CREB-binding protein (CBP). Together, these results highlight the unique role of eRNAs in neuronal gene regulation and demonstrate that eRNAs can be used to identify putative target genes.


Asunto(s)
Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Neuronas/fisiología , ARN/fisiología , Animales , Proteína de Unión a CREB/genética , Proteína de Unión a CREB/metabolismo , Sistemas CRISPR-Cas , Células Cultivadas , Cromatina/metabolismo , Células HEK293 , Humanos , Neuronas/citología , Proteínas Proto-Oncogénicas c-fos/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño , Ratas , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN , Imagen Individual de Molécula
7.
Sci Adv ; 6(26): eaba4221, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32637607

RESUMEN

Drugs of abuse elevate dopamine levels in the nucleus accumbens (NAc) and alter transcriptional programs believed to promote long-lasting synaptic and behavioral adaptations. Here, we leveraged single-nucleus RNA-sequencing to generate a comprehensive molecular atlas of cell subtypes in the NAc, defining both sex-specific and cell type-specific responses to acute cocaine experience in a rat model system. Using this transcriptional map, we identified an immediate early gene expression program that is up-regulated following cocaine experience in vivo and dopamine receptor activation in vitro. Multiplexed induction of this gene program with a large-scale CRISPR-dCas9 activation strategy initiated a secondary synapse-centric transcriptional profile, altered striatal physiology in vitro, and enhanced cocaine sensitization in vivo. Together, these results define the transcriptional response to cocaine with cellular precision and demonstrate that drug-responsive gene programs can potentiate both physiological and behavioral adaptations to drugs of abuse.


Asunto(s)
Cocaína , Animales , Cocaína/farmacología , Dopamina/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Núcleo Accumbens/metabolismo , Ratas , Transcriptoma
8.
eNeuro ; 7(1)2020.
Artículo en Inglés | MEDLINE | ID: mdl-31879366

RESUMEN

Blue wavelength light is used as an optical actuator in numerous optogenetic technologies employed in neuronal systems. However, the potential side effects of blue light in neurons has not been thoroughly explored, and recent reports suggest that neuronal exposure to blue light can induce transcriptional alterations in vitro and in vivo Here, we examined the effects of blue wavelength light in cultured primary rat cortical cells. Exposure to blue light (470 nm) resulted in upregulation of several immediate early genes (IEGs) traditionally used as markers of neuronal activity, including Fos and Fosb, but did not alter the expression of circadian clock genes Bmal1, Cry1, Cry2, Clock, or Per2 IEG expression was increased following 4 h of 5% duty cycle light exposure, and IEG induction was not dependent on light pulse width. Elevated levels of blue light exposure induced a loss of cell viability in vitro, suggestive of overt phototoxicity. Induction of IEGs by blue light was maintained in cortical cultures treated with AraC to block glial proliferation, indicating that induction occurred selectively in postmitotic neurons. Importantly, changes in gene expression induced by blue wavelength light were prevented when cultures were maintained in a photoinert media supplemented with a photostable neuronal supplement instead of commonly utilized neuronal culture media and supplements. Together, these findings suggest that light-induced gene expression alterations observed in vitro stem from a phototoxic interaction between commonly used media and neurons, and offer a solution to prevent this toxicity when using photoactivatable technology in vitro.


Asunto(s)
Luz , Neuronas , Animales , Ritmo Circadiano , Medios de Cultivo , Expresión Génica , Optogenética , Ratas
9.
eNeuro ; 6(1)2019.
Artículo en Inglés | MEDLINE | ID: mdl-30863790

RESUMEN

CRISPR-based technology has provided new avenues to interrogate gene function, but difficulties in transgene expression in post-mitotic neurons has delayed incorporation of these tools in the central nervous system (CNS). Here, we demonstrate a highly efficient, neuron-optimized dual lentiviral CRISPR-based transcriptional activation (CRISPRa) system capable of robust, modular, and tunable gene induction and multiplexed gene regulation across several primary rodent neuron culture systems. CRISPRa targeting unique promoters in the complex multi-transcript gene brain-derived neurotrophic factor (Bdnf) revealed both transcript- and genome-level selectivity of this approach, in addition to highlighting downstream transcriptional and physiological consequences of Bdnf regulation. Finally, we illustrate that CRISPRa is highly efficient in vivo, resulting in increased protein levels of a target gene in diverse brain structures. Taken together, these results demonstrate that CRISPRa is an efficient and selective method to study gene expression programs in brain health and disease.


Asunto(s)
Sistemas CRISPR-Cas , Regulación de la Expresión Génica , Técnicas Genéticas , Neuronas/metabolismo , Animales , Encéfalo/citología , Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Línea Celular Tumoral , Proteínas de la Matriz Extracelular/metabolismo , Masculino , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Cultivo Primario de Células , Distribución Aleatoria , Ratas Sprague-Dawley , Proteína Reelina , Serina Endopeptidasas/metabolismo , Transcripción Genética , Transcriptoma
10.
Bio Protoc ; 9(17): e3348, 2019 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-33654850

RESUMEN

Robust and efficient gene expression control enables the study of a gene's function in the central nervous system. Advances in CRISPR-based technology provide new avenues not only for gene editing, but for complex transcriptional control. Here, we describe a protocol to generate high-titer lentiviruses with neuron-optimized CRISPR-activation constructs (dual lentiviruses consisting of a gene-specific single guide RNA and the CRISPR-activator) for use in primary neurons in vitro or in the adult brain in vivo. This protocol enables modular, scalable, and multiplexable gene regulation in the nervous system and does not require a transgenic model organism.

11.
Yale J Biol Med ; 90(4): 567-581, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29259522

RESUMEN

Within the central nervous system, gene regulatory mechanisms are crucial regulators of cellular development and function, and dysregulation of these systems is commonly observed in major neuropsychiatric and neurological disorders. However, due to a lack of tools to specifically modulate the genome and epigenome in the central nervous system, many molecular and genetic mechanisms underlying cognitive function and behavior are still unknown. Although genome editing tools have been around for decades, the recent emergence of inexpensive, straightforward, and widely accessible CRISPR/Cas9 systems has led to a revolution in gene editing. The development of the catalytically dead Cas9 (dCas9) expanded this flexibility even further by acting as an anchoring system for fused effector proteins, structural scaffolds, and RNAs. Together, these advances have enabled robust, modular approaches for specific targeting and modification of the local chromatin environment at a single gene. This review highlights these advancements and how the combination of powerful modulatory tools paired with the versatility of CRISPR-Cas9-based systems offer great potential for understanding the underlying genetic and epigenetic contributions of neuronal function, behavior, and neurobiological diseases.


Asunto(s)
Sistemas CRISPR-Cas , Sistema Nervioso Central/fisiología , Mamíferos/genética , Animales , Animales Modificados Genéticamente , Técnicas de Reprogramación Celular , Epigénesis Genética , Edición Génica , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Proteínas/genética , Proteínas/metabolismo , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo
12.
Cell Rep ; 16(10): 2666-2685, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27568567

RESUMEN

Human haploinsufficiency of the transcription factor Tcf4 leads to a rare autism spectrum disorder called Pitt-Hopkins syndrome (PTHS), which is associated with severe language impairment and development delay. Here, we demonstrate that Tcf4 haploinsufficient mice have deficits in social interaction, ultrasonic vocalization, prepulse inhibition, and spatial and associative learning and memory. Despite learning deficits, Tcf4(+/-) mice have enhanced long-term potentiation in the CA1 area of the hippocampus. In translationally oriented studies, we found that small-molecule HDAC inhibitors normalized hippocampal LTP and memory recall. A comprehensive set of next-generation sequencing experiments of hippocampal mRNA and methylated DNA isolated from Tcf4-deficient and WT mice before or shortly after experiential learning, with or without administration of vorinostat, identified "memory-associated" genes modulated by HDAC inhibition and dysregulated by Tcf4 haploinsufficiency. Finally, we observed that Hdac2 isoform-selective knockdown was sufficient to rescue memory deficits in Tcf4(+/-) mice.


Asunto(s)
Metilación de ADN/genética , Memoria , Plasticidad Neuronal/genética , Proteína 2 Similar al Factor de Transcripción 7/metabolismo , Animales , Trastorno Autístico/complicaciones , Trastorno Autístico/patología , Trastorno Autístico/fisiopatología , Islas de CpG/genética , Metilación de ADN/efectos de los fármacos , Modelos Animales de Enfermedad , Facies , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Hipocampo/metabolismo , Histona Desacetilasa 2/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , Hiperventilación/complicaciones , Hiperventilación/genética , Hiperventilación/patología , Hiperventilación/fisiopatología , Discapacidad Intelectual/complicaciones , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Discapacidad Intelectual/fisiopatología , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Memoria/efectos de los fármacos , Ratones , Actividad Motora/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Inhibición Prepulso/efectos de los fármacos , Proteína 2 Similar al Factor de Transcripción 7/genética , Transcripción Genética/efectos de los fármacos , Vorinostat
13.
Nat Commun ; 7: 12091, 2016 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-27384705

RESUMEN

Epigenetic mechanisms such as DNA methylation are essential regulators of the function and information storage capacity of neurons. DNA methylation is highly dynamic in the developing and adult brain, and is actively regulated by neuronal activity and behavioural experiences. However, it is presently unclear how methylation status at individual genes is targeted for modification. Here, we report that extra-coding RNAs (ecRNAs) interact with DNA methyltransferases and regulate neuronal DNA methylation. Expression of ecRNA species is associated with gene promoter hypomethylation, is altered by neuronal activity, and is overrepresented at genes involved in neuronal function. Knockdown of the Fos ecRNA locus results in gene hypermethylation and mRNA silencing, and hippocampal expression of Fos ecRNA is required for long-term fear memory formation in rats. These results suggest that ecRNAs are fundamental regulators of DNA methylation patterns in neuronal systems, and reveal a promising avenue for therapeutic targeting in neuropsychiatric disease states.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Metilación de ADN , Epigénesis Genética , Neuronas/metabolismo , Proteínas Oncogénicas v-fos/genética , ARN Mensajero/genética , Animales , Región CA1 Hipocampal/citología , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Islas de CpG , Miedo/fisiología , Humanos , Inyecciones Intraventriculares , Masculino , Neuronas/citología , Oligonucleótidos Antisentido/administración & dosificación , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/metabolismo , Proteínas Oncogénicas v-fos/antagonistas & inhibidores , Proteínas Oncogénicas v-fos/metabolismo , Cultivo Primario de Células , Regiones Promotoras Genéticas , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Técnicas Estereotáxicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA