Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Chem Commun (Camb) ; 60(72): 9769-9772, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39157945

RESUMEN

Human-serum-albumin (HSA)-templated molecularly imprinted polymer nanoparticles (nano-MIPs) were integrated with a solution-gated field-effect transistor-based biosensor. The real-time electrical analysis of nano-MIP-HSA binding showed a high affinity and specificity of nano-MIPs for HSA. Moreover, the binding behaviour was continuously visualised using a solution-gated complementary metal-oxide semiconductor array image biosensor.


Asunto(s)
Técnicas Biosensibles , Polímeros Impresos Molecularmente , Nanopartículas , Albúmina Sérica Humana , Humanos , Nanopartículas/química , Polímeros Impresos Molecularmente/química , Albúmina Sérica Humana/química , Albúmina Sérica Humana/análisis , Impresión Molecular , Polímeros/química
2.
Sci Rep ; 13(1): 20813, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012303

RESUMEN

Osteoclasts uniquely resorb calcified bone matrices. To exert their function, mature osteoclasts maintain the cellular polarity and directional vesicle trafficking to and from the resorbing bone surface. However, the regulatory mechanisms and pathophysiological relevance of these processes remain largely unexplored. Bone histomorphometric analyses in Ccr5-deficient mice showed abnormalities in the morphology and functional phenotype of their osteoclasts, compared to wild type mice. We observed disorganized clustering of nuclei, as well as centrosomes that organize the microtubule network, which was concomitant with impaired cathepsin K secretion in cultured Ccr5-deficient osteoclasts. Intriguingly, forced expression of constitutively active Rho or Rac restored these cytoskeletal phenotypes with recovery of cathepsin K secretion. Furthermore, a gene-disease enrichment analysis identified that PLEKHM1, a responsible gene for osteopetrosis, which regulates lysosomal trafficking in osteoclasts, was regulated by CCR5. These experimental results highlighted that CCR5-mediated signaling served as an intracellular organizer for centrosome clustering in osteoclasts, which was involved in the pathophysiology of bone metabolism.


Asunto(s)
Resorción Ósea , Osteoclastos , Receptores CCR5 , Animales , Ratones , Huesos/metabolismo , Matriz Ósea/metabolismo , Resorción Ósea/genética , Resorción Ósea/metabolismo , Catepsina K/metabolismo , Centrosoma/metabolismo , Osteoclastos/metabolismo , Receptores CCR5/metabolismo
3.
Sens Biosensing Res ; 39: 100549, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36686588

RESUMEN

Viral outbreaks, which include the ongoing coronavirus disease 2019 (COVID-19) pandemic provoked by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), are a major global crisis that enormously threaten human health and social activities worldwide. Consequently, the rapid and repeated treatment and isolation of these viruses to control their spread are crucial to address the COVID-19 pandemic and future epidemics of novel emerging viruses. The application of cost-efficient, rapid, and easy-to-operate detection devices with miniaturized footprints as a substitute for the conventional optic-based polymerase chain reaction (PCR) and immunoassay tests is critical. In this context, semiconductor-based electrical biosensors are attractive sensing platforms for signal readout. Therefore, this study aimed to examine the electrical sensing of patient-derived SARS-CoV-2 samples by harnessing the activity of DNA aptamers directed against spike proteins on viral surfaces. We obtained rapid and sensitive virus detection beyond the Debye length limitation by exploiting aptamers coupled with alkaline phosphatases, which catalytically generate free hydrogen ions which can readily be measured on pH meters or ion-sensitive field-effect transistors. Furthermore, we demonstrated the detection of the viruses of approximately 100 copies/µL in 10 min, surpassing the capability of typical immunochromatographic assays. Therefore, our newly developed technology has great potential for point-of-care testing not only for SARS-CoV-2, but also for other types of pathogens and biomolecules.

4.
Biosensors (Basel) ; 12(11)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36421151

RESUMEN

This study proposed a filter-free wavelength sensor with a double-well structure for detecting fluorescence without an optical filter. The impurity concentration was optimized and simulated to form a double-well-structured sensor, of which the result was consistent with the fabricated sensor. Furthermore, we proposed a novel wavelength detection method using the current ratio based on the silicon absorption coefficient. The results showed that the proposed method successfully detected single wavelengths in the 460-800 nm range. Additionally, we confirmed that quantification was possible using the current ratio of the sensor for a relatively wide band wavelength, such as fluorescence. Finally, the fluorescence that was emitted from the reagents ALEXA488, 594, and 680 was successfully identified and quantified. The proposed sensor can detect wavelengths without optical filters, which can be used in various applications in the biofield, such as POCT as a miniaturized wavelength detection sensor.


Asunto(s)
Silicio , Silicio/química , Fluorescencia
5.
Sensors (Basel) ; 22(17)2022 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-36081127

RESUMEN

We examined the possibility of measuring dissolved oxygen by using a potentiometric solid-state semiconductor sensor. Thin films of tin (IV) oxide (SnO2) are widely used in oxygen gas sensors. However, their ability to detect dissolved oxygen (DO) in solutions is still unknown. In this paper, we present a method for investigating the dissolved oxygen-sensing properties of SnO2 thin films in solutions by fabricating a SnO2-gate field-effect transistor (FET). A similarly structured hydrogen ion-sensitive silicon nitride (Si3N4)-gate FET was fabricated using the same method. The transfer characteristics and sensitivities were experimentally obtained and compared. The transfer characteristics of the FET show a shift in threshold voltage in response to a decrease in DO concentration. The SnO2-gate FET exhibited a sensitivity of 4 mV/ppm, whereas the Si3N4-gate FET showed no response to DO. Although the SnO2-gate FET responds to pH changes in the solution, this sensitivity issue can be eliminated by using a Si3N4-gate FET, which is capable of selectively sensing hydrogen ions without DO sensitivity. The experimental results indicate the promising properties of SnO2 thin films for multimodal sensing applications.

6.
Gastroenterology ; 163(5): 1391-1406.e24, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35963362

RESUMEN

BACKGROUND & AIMS: In the mouse intestinal epithelium, Lgr5+ stem cells are vulnerable to injury, owing to their predominantly cycling nature, and their progenies de-differentiate to replenish the stem cell pool. However, how human colonic stem cells behave in homeostasis and during regeneration remains unknown. METHODS: Transcriptional heterogeneity among colonic epithelial cells was analyzed by means of single-cell RNA sequencing analysis of human and mouse colonic epithelial cells. To trace the fate of human colonic stem or differentiated cells, we generated LGR5-tdTomato, LGR5-iCasase9-tdTomato, LGR5-split-Cre, and KRT20-ERCreER knock-in human colon organoids via genome engineering. p27+ dormant cells were further visualized with the p27-mVenus reporter. To analyze the dynamics of human colonic stem cells in vivo, we orthotopically xenotransplanted fluorescence-labeled human colon organoids into immune-deficient mice. The cell cycle dynamics in xenograft cells were evaluated using 5-ethynyl-2'-deoxyuridine pulse-chase analysis. The clonogenic capacity of slow-cycling human stem cells or differentiated cells was analyzed in the context of homeostasis, LGR5 ablation, and 5-fluorouracil-induced mucosal injury. RESULTS: Single-cell RNA sequencing analysis illuminated the presence of nondividing LGR5+ stem cells in the human colon. Visualization and lineage tracing of slow-cycling LGR5+p27+ cells and orthotopic xenotransplantation validated their homeostatic lineage-forming capability in vivo, which was augmented by 5-FU-induced mucosal damage. Transforming growth factor-ß signaling regulated the quiescent state of LGR5+ cells. Despite the plasticity of differentiated KRT20+ cells, they did not display clonal growth after 5-FU-induced injury, suggesting that occupation of the niche environment by LGR5+p27+ cells prevented neighboring differentiated cells from de-differentiating. CONCLUSIONS: Our results highlight the quiescent nature of human LGR5+ colonic stem cells and their contribution to post-injury regeneration.


Asunto(s)
Receptores Acoplados a Proteínas G , Células Madre , Humanos , Ratones , Animales , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Células Madre/metabolismo , Colon/metabolismo , Mucosa Intestinal/metabolismo , Fluorouracilo , Factores de Crecimiento Transformadores/metabolismo
7.
Nature ; 608(7924): 784-794, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35798028

RESUMEN

Cancer relapse after chemotherapy remains a main cause of cancer-related death. Although the relapse is thought to result from the propagation of resident cancer stem cells1, a lack of experimental platforms that enable the prospective analysis of cancer stem cell dynamics with sufficient spatiotemporal resolution has hindered the testing of this hypothesis. Here we develop a live genetic lineage-tracing system that allows the longitudinal tracking of individual cells in xenotransplanted human colorectal cancer organoids, and identify LGR5+ cancer stem cells that exhibit a dormant behaviour in a chemo-naive state. Dormant LGR5+ cells are marked by the expression of p27, and intravital imaging provides direct evidence of the persistence of LGR5+p27+ cells during chemotherapy, followed by clonal expansion. Transcriptome analysis reveals that COL17A1-a cell-adhesion molecule that strengthens hemidesmosomes-is upregulated in dormant LGR5+p27+ cells. Organoids in which COL17A1 is knocked out lose the dormant LGR5+p27+ subpopulation and become sensitive to chemotherapy, which suggests that the cell-matrix interface has a role in the maintenance of dormancy. Chemotherapy disrupts COL17A1 and breaks the dormancy in LGR5+p27+ cells through FAK-YAP activation. Abrogation of YAP signalling prevents chemoresistant cells from exiting dormancy and delays the regrowth of tumours, highlighting the therapeutic potential of YAP inhibition in preventing cancer relapse. These results offer a viable therapeutic approach to overcome the refractoriness of human colorectal cancer to conventional chemotherapy.


Asunto(s)
Neoplasias del Colon , Células Madre Neoplásicas , Autoantígenos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linaje de la Célula , Proliferación Celular , Rastreo Celular , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Quinasa 1 de Adhesión Focal/metabolismo , Perfilación de la Expresión Génica , Xenoinjertos , Humanos , Recurrencia Local de Neoplasia/patología , Células Madre Neoplásicas/patología , Colágenos no Fibrilares/metabolismo , Organoides/metabolismo , Organoides/patología , Receptores Acoplados a Proteínas G/metabolismo , Factores de Transcripción/metabolismo , Colágeno Tipo XVII
8.
Cell Rep ; 39(6): 110773, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35545035

RESUMEN

CD4+Foxp3+ regulatory T cells (Tregs) are essential for homeostasis in the colon, but the mechanism by which local environmental cues determine the localization of colonic Tregs is unclear. Here, we administer indigo naturalis (IN), a nontoxic phytochemical aryl hydrocarbon receptor (AhR) agonist used for treating patients with ulcerative colitis (UC) in Asia, and we show that IN increases Helios+ Tregs and MHC class II+ epithelial cells (ECs) in the colon. Interactions between Tregs and MHC class II+ ECs occur mainly near the crypt bottom in the steady state, whereas Tregs dramatically increase and shift toward the crypt top following IN treatment. Moreover, the number of CD25+ T cells is increased near the surface of ECs in IN-treated UC patients compared with that in patients treated with other therapies. We also highlight additional AhR-signaling mechanisms in intestinal ECs that determine the accumulation and localization of Helios+ Tregs in the colon.


Asunto(s)
Colitis Ulcerosa , Receptores de Hidrocarburo de Aril , Células Epiteliales , Humanos , Linfocitos T Reguladores
9.
Sci Rep ; 12(1): 2949, 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35194095

RESUMEN

The Belousov-Zhabotinsky (BZ) self-oscillation reaction is an important chemical model to elucidate nonequilibrium chemistry in an open system. However, there are only a few studies on the electrical behavior of pH oscillation induced by the BZ reaction, although numerous studies have been carried out to investigate the mechanisms by which the BZ reaction interacts with redox reactions, which results in potential changes. Needless to say, the electrical characteristic of a self-oscillating polymer gel driven by the BZ reaction has not been clarified. On the other hand, a solution-gated ion-sensitive field-effect transistor (ISFET) has a superior ability to detect ionic charges and includes capacitive membranes on the gate electrode. In this study, we carried out the electrical monitoring of self-oscillation behaviors at the chemoelectrical interface based on the BZ reaction using ISFET sensors, focusing on the pH oscillation and the electrical dynamics of the self-oscillating polymer brush. The pH oscillation induced by the BZ reaction is not only electrically observed using the ISFET sensor, the electrical signals of which results from the interfacial potential between the solution and the gate insulator, but also visualized using a large-scale and high-density ISFET sensor. Moreover, the N-isopropylacrylamide (NIPAAm)-based self-oscillating polymer brush with Ru(bpy)3 as a catalyst clearly shows a periodic electrical response based on the swelling-deswelling behavior caused by the BZ reaction on the gate insulator of the ISFET sensor. Thus, the elucidation of the electrical self-oscillation behaviors induced by the BZ reaction using the ISFET sensor provides a solution to the problems of nonequilibrium chemistry.

10.
Sensors (Basel) ; 22(4)2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35214266

RESUMEN

Various biosensors that are based on microfabrication technology have been developed as point-of-care testing devices for disease screening. The Fabry-Pérot interferometric (FPI) surface-stress sensor was developed to improve detection sensitivity by performing label-free biomarker detection as a nanomechanical deflection of a freestanding membrane to adsorb the molecules. However, chemically functionalizing the freestanding nanosheet with excellent stress sensitivity for selective molecular detection may cause the surface chemical reaction to deteriorate the nanosheet quality. In this study, we developed a minimally invasive chemical functionalization technique to create a biosolid interface on the freestanding nanosheet of a microelectromechanical system optical interferometric surface-stress immunosensor. For receptor immobilization, glutaraldehyde cross-linking on the surface of the amino-functionalized parylene membrane reduced the shape variation of the freestanding nanosheet to 1/5-1/10 of the previous study and achieved a yield of 95%. In addition, the FPI surface-stress sensor demonstrated molecular selectivity and concentration dependence for prostate-specific antigen with a dynamic range of concentrations from 100 ag/mL to 1 µg/mL. In addition, the minimum limit of detection of the proposed sensor was 2,000,000 times lower than that of the conventional nanomechanical cantilevers.


Asunto(s)
Técnicas Biosensibles , Sistemas Microelectromecánicos , Neoplasias de la Próstata , Biomarcadores , Técnicas Biosensibles/métodos , Humanos , Inmunoensayo/métodos , Masculino , Neoplasias de la Próstata/diagnóstico
11.
Sensors (Basel) ; 21(22)2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34833757

RESUMEN

Towards clarifying the spatio-temporal neurotransmitter distribution, potentiometric redox sensor arrays with 23.5-µm resolution were fabricated. The sensor array based on a charge-transfer-type potentiometric sensor comprises 128×128 pixels with gold electrodes deposited on the surface of pixels. The sensor output corresponding to the interfacial potential of the electrode changed logarithmically with the mixture ratio of K3Fe(CN)6 and K4Fe(CN)6, where the redox sensitivity reached 49.9 mV/dec. By employing hydrogen peroxidase as an enzyme and ferrocene as an electron mediator, the sensing characteristics for hydrogen peroxide (H2O2) were investigated. The analyses of the sensing characteristics revealed that the sensitivity was about 44.7 mV/dec., comparable to the redox sensitivity, while the limit of detection (LOD) was achieved to be 1 µM. Furthermore, the oxidation state of the electron mediator can be the key to further lowering the LOD. Then, by immobilizing oxidizing enzyme for H2O2 and glutamate oxidase, glutamate (Glu) measurements were conducted. As a result, similar sensitivity and LOD to those of H2O2 were obtained. Finally, the real-time distribution of 1 µM Glu was visualized, demonstrating the feasibility of our device as a high-resolution bioimaging technique.


Asunto(s)
Técnicas Biosensibles , Peróxido de Hidrógeno , Electrodos , Ácido Glutámico , Oro , Oxidación-Reducción , Potenciometría
12.
Nat Commun ; 12(1): 5547, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34545095

RESUMEN

A cutting edge therapy for future immuno-oncology is targeting a new series of inhibitory receptors (IRs): LAG-3, TIM-3, and TIGIT. Both immunogenomic analyses and diagnostic platforms to distinguish candidates and predict good responders to these IR-related agents are vital in clinical pathology. By applying an automated single-cell count for immunolabelled LAG-3, TIM-3, and TIGIT, we reveal that individual IR levels with exclusive domination in each tumour can serve as valid biomarkers for profiling human renal cell carcinoma (RCC). We uncover the immunogenomic landscape associated with individual IR levels in human RCC tumours with metastases in various organs and histological subtypes. We then externally validate our results and devise a workflow with optimal biomarker cut-offs for discriminating the LAG-3, TIM-3, and TIGIT tumour profiles. The discrimination of LAG-3, TIM-3, and TIGIT profiles in tumours may have a broad impact on investigations of immunotherapy responses after targeting a new series of IRs.


Asunto(s)
Antígenos CD/metabolismo , Carcinoma de Células Renales/metabolismo , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Neoplasias Renales/metabolismo , Receptores Inmunológicos/metabolismo , Anciano , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/inmunología , Carcinoma de Células Renales/patología , Femenino , Humanos , Neoplasias Renales/genética , Neoplasias Renales/inmunología , Neoplasias Renales/patología , Masculino , Persona de Mediana Edad , Metástasis de la Neoplasia , Fenotipo , Reproducibilidad de los Resultados , Proteína del Gen 3 de Activación de Linfocitos
13.
Cancer Immunol Immunother ; 70(10): 3001-3013, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34259900

RESUMEN

Despite the high sensitivity of renal cell carcinoma (RCC) to immunotherapy, RCC has been recognized as an unusual disease in which CD8+ T-cell infiltration into the tumor beds is related to a poor prognosis. To approach the inner landscape of immunobiology of RCC, we performed multiplexed seven-color immunohistochemistry (CD8, CD39, PD-1, Foxp3, PD-L1, and pan-cytokeratin AE1/AE3 with DAPI), which revealed the automated single-cell counts and calculations of individual cell-to-cell distances. In total, 186 subjects were included, in which CD39 was used as a marker for distinguishing tumor-specific (CD39+) and bystander (CD39-) T-cells. Our clear cell RCC cohort also revealed a poor prognosis if the tumor showed increased CD8+ T-cell infiltration. Intratumoral CD8+CD39+ T-cells as well as their exhausted CD8+CD39+PD-1+ T-cells in the central tumor areas enabled the subgrouping of patients according to malignancy. Analysis using specimens post-antiangiogenic treatment revealed a dramatic increase in proliferative Treg fraction Foxp3+PD-1+ cells, suggesting a potential mechanism of hyperprogressive disease after uses of anti-PD-1 antibody. Our cell-by-cell study platform provided spatial information on tumors, where bystander CD8+CD39- T-cells were dominant in the invasive margin areas. We uncovered a potential interaction between CD8+CD39+PD-1+ T-cells and Foxp3+PD-1+ Treg cells due to cell-to-cell proximity, forming a spatial niche more specialized in immunosuppression under PD-1 blockade. A paradigm shift to the immunosuppressive environment was more obvious in metastatic lesions; rather the infiltration of Foxp3+ and Foxp3+PD-1+ Treg cells was more pronounced. With this multiplexed single-cell pathology technique, we revealed further insight into the immunobiological standing of RCC.


Asunto(s)
Linfocitos T CD8-positivos/metabolismo , Carcinoma de Células Renales/genética , Inmunoterapia/métodos , Neoplasias Renales/genética , Carcinoma de Células Renales/patología , Humanos , Neoplasias Renales/patología , Pronóstico , Resultado del Tratamiento
14.
Sensors (Basel) ; 22(1)2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-35009624

RESUMEN

Adenosine 5'-triphosphate (ATP) plays a crucial role as an extracellular signaling molecule in the central nervous system and is closely related to various nerve diseases. Therefore, label-free imaging of extracellular ATP dynamics and spatiotemporal analysis is crucial for understanding brain function. To decrease the limit of detection (LOD) of imaging extracellular ATP, we fabricated a redox-type label-free ATP image sensor by immobilizing glycerol-kinase (GK), L-α-glycerophosphate oxidase (LGOx), and horseradish peroxidase (HRP) enzymes in a polymer film on a gold electrode-modified potentiometric sensor array with a 37.3 µm-pitch. Hydrogen peroxide (H2O2) is generated through the enzymatic reactions from GK to LGOx in the presence of ATP and glycerol, and ATP can be detected as changes in its concentration using an electron mediator. Using this approach, the LOD for ATP was 2.8 µM with a sensitivity of 77 ± 3.8 mV/dec., under 10 mM working buffers at physiological pH, such as in in vitro experiments, and the LOD was great superior 100 times than that of the hydrogen ion detection-based image sensor. This redox-type ATP image sensor may be successfully applied for in vitro sensitive imaging of extracellular ATP dynamics in brain nerve tissue or cells.


Asunto(s)
Técnicas Biosensibles , Peróxido de Hidrógeno , Adenosina Trifosfato , Enzimas Inmovilizadas , Peroxidasa de Rábano Silvestre/metabolismo , Oxidación-Reducción
15.
Biosens Bioelectron ; 172: 112778, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33157412

RESUMEN

We demonstrated an optical interferometer-based surface-stress immunosensor using freestanding polymethyl methacrylate (PMMA)/parylene-C nanosheet with high sensitivity for detection of biomolecules. PMMA/parylene-C nanosheets were transferred onto a silicon substrate with microcavities to fabricate freestanding submicron-thick membrane with a sealed cavity structure. The adhesive force between the transferred parylene-C and binder parylene-C layer was measured to be 1.06-2.4 N/10 mm by tape test. Evading Debye shielding, these nanomechanical sensors allow detection of the adsorption on the membrane surface through changes in surface stress transduced by the electric charge. We optimized the density of receptors and mode of immobilization for high sensitivity. To evaluate the selectivity of the sensor, membrane deflections induced by various proteins were measured and the spectral shifts showed high selectivity only for the target antigen. The minimum limit of detection (LOD) of the sensor for human serum albumin antigen was 0.1-1 fg/mL (1.5-15 aM), which was 20,000 times lower than that of the conventional micro-cantilever sensor.


Asunto(s)
Técnicas Biosensibles , Sistemas Microelectromecánicos , Humanos , Inmunoensayo , Polímeros , Polimetil Metacrilato , Xilenos
16.
Sensors (Basel) ; 20(23)2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33266348

RESUMEN

Disease screening by exhaled breath diagnosis is less burdensome for patients, and various devices have been developed as promising diagnostic methods. We developed a microelectromechanical system (MEMS) optical interferometric surface stress sensor to detect volatile ethanol gas at room temperature (26~27 °C) with high sensitivity. A sub-micron air gap in the optical interferometric sensor reduces interference orders, leading to increased spectral response associated with nanomechanical deflection caused by ethanol adsorption. The sub-micron cavity was embedded in a substrate using a transfer technique of parylene-C nanosheet. The sensor with a 0.4 µm gap shows a linear stable reaction, with small standard deviations, even at low ethanol gas concentrations of 5-110 ppm and a reversible reaction to the gas concentration change. Furthermore, the possibility of detecting sub-ppm ethanol concentration by optimizing the diameter and thickness of the deformable membrane is suggested. Compared with conventional MEMS surface stress gas sensors, the proposed optical interferometric sensor demonstrated high-sensitivity gas detection with exceeding the detection limit by two orders of magnitude while reducing the sensing area.

17.
Nat Commun ; 11(1): 712, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-32024837

RESUMEN

Recent studies have shown that protons can function as neurotransmitters in cultured neurons. To further investigate regional and neural activity-dependent proton dynamics in the brain, the development of a device with both wide-area detectability and high spatial-ltemporal resolution is necessary. Therefore, we develop an image sensor with a high spatial-temporal resolution specifically designed for measuring protons in vivo. Here, we demonstrate that spatially deferent neural stimulation by visual stimulation induced distinct patterns of proton changes in the visual cortex. This result indicates that our biosensor can detect micrometer and millisecond scale changes of protons across a wide area. Our study demonstrates that a CMOS-based proton image sensor with high spatial and temporal precision can be used to detect pH changes associated with biological events. We believe that our sensor may have broad applicability in future biological studies.


Asunto(s)
Técnicas Biosensibles/instrumentación , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Protones , Animales , Técnicas Biosensibles/métodos , Química Encefálica , Diseño de Equipo , Concentración de Iones de Hidrógeno , Masculino , Ratones Endogámicos C57BL , Estimulación Luminosa , Análisis Espacio-Temporal , Corteza Visual/diagnóstico por imagen , Corteza Visual/fisiología
18.
Nanoscale Adv ; 2(4): 1431-1436, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36132319

RESUMEN

Graphene-based sensors are of great interest in research due to their high specific surface area and high electron mobility that make them suitable for numerous advanced applications. In this paper, selective molecular detection using an antigen-antibody reaction on suspended graphene with a cavity-sealing structure was demonstrated. The suspended graphene sealed nanocavities in a pre-patterned Si substrate, which increased robustness and allowed the use of wet chemical processes for surface functionalization of the suspended graphene to achieve selective molecular binding. The selectivity was evaluated by nanomechanical deflection induced by molecular adsorption on the suspended graphene, resulting in spectral shifts in the optical interference between the suspended graphene and Si substrate. The chemically functionalized suspended graphene enables the analysis of intermolecular interactions and molecular kinetics by colorimetry using optical interference.

19.
Sensors (Basel) ; 19(7)2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30939859

RESUMEN

A semiconductor array pH image sensor consisting of four separated blocks was fabricated using charged coupled device (CCD) and complementary metal oxide semiconductor (CMOS) technologies. The sensing surface of one of the four blocks was Si3N4 and this block responded to H⁺. The surfaces of the other three blocks were respectively covered with cation sensitive membranes, which were separately printed with plasticized poly (vinyl chloride) solutions including Na⁺, K⁺, and Ca2+ ionophores by using an ink-jet printing method. In addition, each block of the image sensor with 128 × 128 pixels could have a calibration curve generated in each independent measurement condition. The present sensor could measure the concentration image of four kinds of ions (H⁺, K⁺, Na +, Ca2+) simultaneously at 8.3 frames per second (fps) in separated regions on a chip.

20.
IEEE Trans Biomed Circuits Syst ; 13(2): 352-363, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30676977

RESUMEN

Various biosensing platforms for real-time monitoring and mapping of chemical signals in neural networks have been developed based on CMOS process technology. Despite their achievements, however, there remains a demand for an advanced method that can offer detailed insights into cellular functions with higher spatiotemporal resolution. Here, we present a pH image sensor that employs a high-density array of 256 × 256 pixels and readout circuitry designed for fast operation. The sensor's characteristics, such as the pH sensitivity of 55.1 mV/pH and higher frame speed of 1933 fps, are experimentally demonstrated and compared to those of state-of-the-art pH image sensors. Among them, our sensor presents the smallest pitch of 2 µm with a significantly high operation speed. This sensor can successfully detect a pH change, but also transform the measured data to a two-dimensional image series in real time. The practical spatial resolution of images is investigated by an evaluation method that we first propose in this paper. By this method, we confirm that our sensor can discriminate objects distanced over 4 µm apart, which is twice bigger than the pixel pitch. In order to analyze the degraded resolution and image blur, a capacitive coupling effect at an ion-sensitive membrane is suggested as the main factor and demonstrated by simulation.


Asunto(s)
Técnicas Biosensibles , Imagenología Tridimensional , Calibración , Simulación por Computador , Concentración de Iones de Hidrógeno , Modelos Teóricos , Transistores Electrónicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA