Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cells ; 13(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39273013

RESUMEN

Vacuolar-type ATPase (v-ATPase) is a multimeric protein complex that regulates H+ transport across membranes and intra-cellular organelle acidification. Catabolic processes, such as endocytic degradation and autophagy, strictly rely on v-ATPase-dependent luminal acidification in lysosomes. The v-ATPase complex is expressed at high levels in the brain and its impairment triggers neuronal dysfunction and neurodegeneration. Due to their post-mitotic nature and highly specialized function and morphology, neurons display a unique vulnerability to lysosomal dyshomeostasis. Alterations in genes encoding subunits composing v-ATPase or v-ATPase-related proteins impair brain development and synaptic function in animal models and underlie genetic diseases in humans, such as encephalopathies, epilepsy, as well as neurodevelopmental, and degenerative disorders. This review presents the genetic and functional evidence linking v-ATPase subunits and accessory proteins to various brain disorders, from early-onset developmental epileptic encephalopathy to neurodegenerative diseases. We highlight the latest emerging therapeutic strategies aimed at mitigating lysosomal defects associated with v-ATPase dysfunction.


Asunto(s)
Encéfalo , ATPasas de Translocación de Protón Vacuolares , Humanos , ATPasas de Translocación de Protón Vacuolares/metabolismo , ATPasas de Translocación de Protón Vacuolares/genética , Encéfalo/patología , Encéfalo/metabolismo , Animales , Lisosomas/metabolismo , Lisosomas/enzimología , Encefalopatías/genética , Encefalopatías/metabolismo , Encefalopatías/enzimología , Encefalopatías/patología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo
2.
Clin Genet ; 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39305096

RESUMEN

Pediatric intestinal pseudo-obstruction (PIPO) is a rare congenital disorder of the enteric nervous system with distal colon aganglionosis potentially leading to intestinal obstruction. Recently, biallelic variants in KIF26A, encoding a crucial motor protein for the migration and differentiation of enteric neural crest cells, have been associated with a neurodevelopmental condition featuring cortical defects and PIPO-like features, though in absence of aganglionosis. So far, only 10 patients have been reported. In this study, we investigated three subjects with congenital hydrocephalus, neurodevelopmental impairment, and intestinal obstruction megacolon syndrome. Brain MRI revealed malformations within cortical dysplasia spectrum, including polymicrogyria and heterotopia. Pathology study of the intestine revealed aganglionosis and elevated acetylcholinesterase activity in parasympathetic nerve fibers. Through trio-exome sequencing (ES), we detected four novel biallelic KIF26A variants, including two missense changes (#1) and two distinct homozygous truncating variants in (#2 and #3). All variants are rare and predicted to be deleterious according to in silico tools. To characterize the impact of the missense variants, we performed 3D protein modeling using Alphafold3 and YASARA. Mutants exhibited increased energy scores compared to wild-type protein, supporting a significant structural destabilization of the protein. Our study expands the genotype and phenotype spectrum of the emerging KIF26A-related disorder.

3.
Am J Med Genet A ; : e63824, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39031930

RESUMEN

Legius syndrome, commonly referred to as SPRED1-related neurofibromatosis type 1-like syndrome, is a rare autosomal dominant disorder characterized by café-au-lait macules, freckling, lipomas, macrocephaly, and heterogeneous neurodevelopmental manifestations, including a different degree of learning difficulties. Although a partial clinical overlap exists with neurofibromatosis type 1 (NF1), Legius syndrome is distinguished by its genetic etiology and the absence of neurofibromas, indicating an inherent lack of tumor risk. The SPRED1 gene encodes the Sprouty-related protein with an EVH1 domain 1 (SPRED1), a negative regulator of the RAS-MAPK signaling pathway with a crucial role in cellular growth and development. Despite various genetic variants and genomic deletions associated with Legius syndrome, the full genetic spectrum of this condition remains elusive. In this study, we investigated the underlying genetic etiology in a cohort of patients presenting with typical manifestations of Legius syndrome using a custom Next Generation Sequencing (NGS) panel and Multiplex Ligation-Dependent Probe Amplification (MLPA) for NF1 and SPRED1. We identified 12 novel SPRED1 damaging variants segregating with the phenotype in all families. These rare variants affect conserved residues of the protein and are predicted damaging according to in silico tools. No clear genotype-phenotype correlations could be observed in the current cohort and previously reported patients, underscoring the heterogeneous genotype spectrum of this condition. Our findings expand the understanding of SPRED1 variants causing Legius syndrome and underscore the importance of comprehensively characterizing the genetic landscape of this disorder. Despite the absence of clear genotype-phenotype correlations, elucidating the genetic etiology of Legius syndrome is pertinent for facilitating accurate diagnosis, genetic counseling, and therapeutic interventions.

4.
Neurol Genet ; 10(4): e200168, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39035822

RESUMEN

Objectives: To present a case series of novel CHD2 variants in patients presenting with genetic epileptic and developmental encephalopathy. Background: CHD2 gene encodes an ATP-dependent enzyme, chromodomain helicase DNA-binding protein 2, involved in chromatin remodeling. Pathogenic variants in CHD2 are linked to early-onset conditions such as developmental and epileptic encephalopathy, drug-resistant epilepsies, and neurodevelopmental disorders. Approximately 225 diagnosed patients from 28 countries exhibit various allelic variants in CHD2, including small intragenic deletions/insertions and missense, nonsense, and splice site variants. Results: We present the molecular and clinical characteristics of 17 unreported individuals from 17 families with novel pathogenic or likely pathogenic variants in CHD2. All individuals presented with severe global developmental delay, childhood-onset myoclonic epilepsy, and additional neuropsychiatric features, such as behavioral including autism, ADHD, and hyperactivity. Additional findings include abnormal reflexes, hypotonia and hypertonia, motor impairment, gastrointestinal problems, and kyphoscoliosis. Neuroimaging features included hippocampal signal alterations (4/10), with additional volume loss in 2 cases, inferior vermis hypoplasia (7/10), mild cerebellar atrophy (4/10), and cerebral atrophy (1/10). Discussion: Our study broadens the geographic scope of CHD2-related phenotypes, providing valuable insights into the prevalence and clinical characteristics of this genetic disorder in previously underrepresented populations.

5.
Genome Med ; 16(1): 72, 2024 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-38811945

RESUMEN

BACKGROUND: We previously described the KINSSHIP syndrome, an autosomal dominant disorder associated with intellectual disability (ID), mesomelic dysplasia and horseshoe kidney, caused by de novo variants in the degron of AFF3. Mouse knock-ins and overexpression in zebrafish provided evidence for a dominant-negative mode of action, wherein an increased level of AFF3 resulted in pathological effects. METHODS: Evolutionary constraints suggest that other modes-of-inheritance could be at play. We challenged this hypothesis by screening ID cohorts for individuals with predicted-to-be damaging variants in AFF3. We used both animal and cellular models to assess the deleteriousness of the identified variants. RESULTS: We identified an individual with a KINSSHIP-like phenotype carrying a de novo partial duplication of AFF3 further strengthening the hypothesis that an increased level of AFF3 is pathological. We also detected seventeen individuals displaying a milder syndrome with either heterozygous Loss-of-Function (LoF) or biallelic missense variants in AFF3. Consistent with semi-dominance, we discovered three patients with homozygous LoF and one compound heterozygote for a LoF and a missense variant, who presented more severe phenotypes than their heterozygous parents. Matching zebrafish knockdowns exhibit neurological defects that could be rescued by expressing human AFF3 mRNA, confirming their association with the ablation of aff3. Conversely, some of the human AFF3 mRNAs carrying missense variants identified in affected individuals did not rescue these phenotypes. Overexpression of mutated AFF3 mRNAs in zebrafish embryos produced a significant increase of abnormal larvae compared to wild-type overexpression further demonstrating deleteriousness. To further assess the effect of AFF3 variation, we profiled the transcriptome of fibroblasts from affected individuals and engineered isogenic cells harboring + / + , KINSSHIP/KINSSHIP, LoF/ + , LoF/LoF or KINSSHIP/LoF AFF3 genotypes. The expression of more than a third of the AFF3 bound loci is modified in either the KINSSHIP/KINSSHIP or the LoF/LoF lines. While the same pathways are affected, only about one third of the differentially expressed genes are common to the homozygote datasets, indicating that AFF3 LoF and KINSSHIP variants largely modulate transcriptomes differently, e.g. the DNA repair pathway displayed opposite modulation. CONCLUSIONS: Our results and the high pleiotropy shown by variation at this locus suggest that minute changes in AFF3 function are deleterious.


Asunto(s)
Discapacidad Intelectual , Transcriptoma , Pez Cebra , Animales , Femenino , Humanos , Masculino , Discapacidad Intelectual/genética , Mutación con Pérdida de Función , Mutación Missense , Fenotipo , Pez Cebra/genética
6.
Prenat Diagn ; 44(8): 1003-1007, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38768012

RESUMEN

Brachyolmia is a rare form of skeletal dysplasia characterized by a wide genetic and clinical heterogeneity. This condition is usually diagnosed postnatally, and very few cases of prenatal diagnosis have been described so far. Here, we report a case of a pregnant woman at 20 weeks' gestation referred to our center because of fetal short long bones. On targeted ultrasound, mild bowing of the femurs and fibulae and mild micrognathia were also observed. Exome sequencing analysis showed the presence in compound heterozygosity of two pathogenic variants-both truncating variants-in the 3-prime-phosphoadenosine 5-prime-phosphosulfate synthase 2 (PAPSS2) gene, known to cause brachyolmia type 4 (OMIM #612847). Of note, all of the few cases reported prenatally have indeed truncating variants. Hence, we speculate this kind of variant is likely responsible for a complete loss of function of the protein leading to an earlier and more severe phenotype.


Asunto(s)
Sulfato Adenililtransferasa , Humanos , Femenino , Embarazo , Adulto , Sulfato Adenililtransferasa/genética , Ultrasonografía Prenatal , Secuenciación del Exoma , Enfermedades del Desarrollo Óseo/genética , Enfermedades del Desarrollo Óseo/diagnóstico , Enfermedades del Desarrollo Óseo/diagnóstico por imagen , Complejos Multienzimáticos
7.
Am J Hum Genet ; 111(6): 1206-1221, 2024 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-38772379

RESUMEN

Utilizing trio whole-exome sequencing and a gene matching approach, we identified a cohort of 18 male individuals from 17 families with hemizygous variants in KCND1, including two de novo missense variants, three maternally inherited protein-truncating variants, and 12 maternally inherited missense variants. Affected subjects present with a neurodevelopmental disorder characterized by diverse neurological abnormalities, mostly delays in different developmental domains, but also distinct neuropsychiatric signs and epilepsy. Heterozygous carrier mothers are clinically unaffected. KCND1 encodes the α-subunit of Kv4.1 voltage-gated potassium channels. All variant-associated amino acid substitutions affect either the cytoplasmic N- or C-terminus of the channel protein except for two occurring in transmembrane segments 1 and 4. Kv4.1 channels were functionally characterized in the absence and presence of auxiliary ß subunits. Variant-specific alterations of biophysical channel properties were diverse and varied in magnitude. Genetic data analysis in combination with our functional assessment shows that Kv4.1 channel dysfunction is involved in the pathogenesis of an X-linked neurodevelopmental disorder frequently associated with a variable neuropsychiatric clinical phenotype.


Asunto(s)
Trastornos del Neurodesarrollo , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Epilepsia/genética , Secuenciación del Exoma , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Heterocigoto , Mutación Missense/genética , Trastornos del Neurodesarrollo/genética , Linaje , Fenotipo , Canales de Potasio Shal/genética
8.
Eur J Hum Genet ; 32(8): 998-1004, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38822122

RESUMEN

Structural variants (SVs), including large deletions, duplications, inversions, translocations, and more complex events have the potential to disrupt gene function resulting in rare disease. Nevertheless, current pipelines and clinical decision support systems for exome sequencing (ES) tend to focus on small alterations such as single nucleotide variants (SNVs) and insertions-deletions shorter than 50 base pairs (indels). Additionally, detection and interpretation of large copy-number variants (CNVs) are frequently performed. However, detection of other types of SVs in ES data is hampered by the difficulty of identifying breakpoints in off-target (intergenic or intronic) regions, which makes robust identification of SVs challenging. In this paper, we demonstrate the utility of SV calling in ES resulting in a diagnostic yield of 0.4% (23 out of 5825 probands) for a large cohort of unsolved patients collected by the Solve-RD consortium. Remarkably, 8 out of 23 pathogenic SV were not found by comprehensive read-depth-based CNV analysis, resulting in a 0.13% increased diagnostic value.


Asunto(s)
Enfermedades Raras , Humanos , Enfermedades Raras/genética , Enfermedades Raras/diagnóstico , Variaciones en el Número de Copia de ADN , Exoma/genética , Secuenciación del Exoma , Pruebas Genéticas/métodos , Pruebas Genéticas/normas , Variación Estructural del Genoma
10.
Methods Mol Biol ; 2794: 271-280, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38630236

RESUMEN

Malformations of cortical development (MCDs) are a diverse group of disorders that result from abnormal neuronal migration, proliferation, and differentiation during brain development. Head computed tomography (CT) has limited use in the diagnosis of MCDs and should be reserved for selected cases with specific indications or when magnetic resonance imaging is not available or contraindicated. CT can detect brain calcifications associated with MCDs, thus helping in the differential diagnosis between acquired and genetic MCDs or in the identification of different genetic patterns. Moreover, CT can provide high-resolution images of the skull and bones, thus identifying associated malformations, such as craniosynostosis, inner and middle ear malformations, and vertebral anomalies. In this chapter, we review the CT scan technique, data analysis, and indications in the investigation of MCDs.


Asunto(s)
Malformaciones del Desarrollo Cortical , Osteocondrodisplasias , Humanos , Cintigrafía , Análisis de Datos
11.
Methods Mol Biol ; 2794: 281-292, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38630237

RESUMEN

Brain magnetic resonance imaging (MRI) is a noninvasive imaging modality that utilizes powerful magnets and radio waves to generate detailed images of the brain, making it a valuable tool for investigating malformations of cortical development (MCD). Various MRI techniques, including 3D T1-weighted, multiplanar thin-sliced T2-weighted, and 3D fluid-attenuated inversion recovery (FLAIR) sequences, can provide high-resolution images with excellent spatial and contrast resolution, allowing for a detailed visualization of cortical anatomy and abnormalities. Almost all MCD can be detected and characterized using MRI. Advanced techniques, such as arterial spin labeling MR perfusion, diffusion tensor imaging (DTI), and functional MRI (fMRI), may be used to improve the detection rate of these malformations and to plan surgery in case of drug-resistant epilepsy. However, there are also limitations related to high cost, relatively low availability, need for sedation or anesthesia, and limited sensitivity for detecting subtle focal cortical malformations. Despite these limitations, brain MRI plays a crucial role in the investigation of MCD, providing valuable information for diagnosis, treatment planning, and patient management.


Asunto(s)
Anestesia , Malformaciones del Desarrollo Cortical , Humanos , Imagen de Difusión Tensora , Imagen por Resonancia Magnética , Análisis de Datos , Malformaciones del Desarrollo Cortical/diagnóstico por imagen
12.
Front Mol Neurosci ; 17: 1222935, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38495551

RESUMEN

This study reports on biallelic homozygous and monoallelic de novo variants in SLITRK3 in three unrelated families presenting with epileptic encephalopathy associated with a broad neurological involvement characterized by microcephaly, intellectual disability, seizures, and global developmental delay. SLITRK3 encodes for a transmembrane protein that is involved in controlling neurite outgrowth and inhibitory synapse development and that has an important role in brain function and neurological diseases. Using primary cultures of hippocampal neurons carrying patients' SLITRK3 variants and in combination with electrophysiology, we demonstrate that recessive variants are loss-of-function alleles. Immunostaining experiments in HEK-293 cells showed that human variants C566R and E606X change SLITRK3 protein expression patterns on the cell surface, resulting in highly accumulating defective proteins in the Golgi apparatus. By analyzing the development and phenotype of SLITRK3 KO (SLITRK3-/-) mice, the study shows evidence of enhanced susceptibility to pentylenetetrazole-induced seizure with the appearance of spontaneous epileptiform EEG as well as developmental deficits such as higher motor activities and reduced parvalbumin interneurons. Taken together, the results exhibit impaired development of the peripheral and central nervous system and support a conserved role of this transmembrane protein in neurological function. The study delineates an emerging spectrum of human core synaptopathies caused by variants in genes that encode SLITRK proteins and essential regulatory components of the synaptic machinery. The hallmark of these disorders is impaired postsynaptic neurotransmission at nerve terminals; an impaired neurotransmission resulting in a wide array of (often overlapping) clinical features, including neurodevelopmental impairment, weakness, seizures, and abnormal movements. The genetic synaptopathy caused by SLITRK3 mutations highlights the key roles of this gene in human brain development and function.

13.
NPJ Genom Med ; 9(1): 18, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429302

RESUMEN

CELSR3 codes for a planar cell polarity protein. We describe twelve affected individuals from eleven independent families with bi-allelic variants in CELSR3. Affected individuals presented with an overlapping phenotypic spectrum comprising central nervous system (CNS) anomalies (7/12), combined CNS anomalies and congenital anomalies of the kidneys and urinary tract (CAKUT) (3/12) and CAKUT only (2/12). Computational simulation of the 3D protein structure suggests the position of the identified variants to be implicated in penetrance and phenotype expression. CELSR3 immunolocalization in human embryonic urinary tract and transient suppression and rescue experiments of Celsr3 in fluorescent zebrafish reporter lines further support an embryonic role of CELSR3 in CNS and urinary tract formation.

14.
Am J Hum Genet ; 111(3): 529-543, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38387458

RESUMEN

The Rab family of guanosine triphosphatases (GTPases) includes key regulators of intracellular transport and membrane trafficking targeting specific steps in exocytic, endocytic, and recycling pathways. DENND5B (Rab6-interacting Protein 1B-like protein, R6IP1B) is the longest isoform of DENND5, an evolutionarily conserved DENN domain-containing guanine nucleotide exchange factor (GEF) that is highly expressed in the brain. Through exome sequencing and international matchmaking platforms, we identified five de novo variants in DENND5B in a cohort of five unrelated individuals with neurodevelopmental phenotypes featuring cognitive impairment, dysmorphism, abnormal behavior, variable epilepsy, white matter abnormalities, and cortical gyration defects. We used biochemical assays and confocal microscopy to assess the impact of DENND5B variants on protein accumulation and distribution. Then, exploiting fluorescent lipid cargoes coupled to high-content imaging and analysis in living cells, we investigated whether DENND5B variants affected the dynamics of vesicle-mediated intracellular transport of specific cargoes. We further generated an in silico model to investigate the consequences of DENND5B variants on the DENND5B-RAB39A interaction. Biochemical analysis showed decreased protein levels of DENND5B mutants in various cell types. Functional investigation of DENND5B variants revealed defective intracellular vesicle trafficking, with significant impairment of lipid uptake and distribution. Although none of the variants affected the DENND5B-RAB39A interface, all were predicted to disrupt protein folding. Overall, our findings indicate that DENND5B variants perturb intracellular membrane trafficking pathways and cause a complex neurodevelopmental syndrome with variable epilepsy and white matter involvement.


Asunto(s)
Epilepsia , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/metabolismo , Encéfalo/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Lípidos , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Proteínas de Unión al GTP rab/metabolismo
15.
Eur J Hum Genet ; 32(9): 1144-1149, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38355961

RESUMEN

Translation elongation factor eEF1A2 constitutes the alpha subunit of the elongation factor-1 complex, responsible for the enzymatic binding of aminoacyl-tRNA to the ribosome. Since 2012, 21 pathogenic missense variants affecting EEF1A2 have been described in 42 individuals with a severe neurodevelopmental phenotype including epileptic encephalopathy and moderate to profound intellectual disability (ID), with neurological regression in some patients. Through international collaborative call, we collected 26 patients with EEF1A2 variants and compared them to the literature. Our cohort shows a significantly milder phenotype. 83% of the patients are walking (vs. 29% in the literature), and 84% of the patients have language skills (vs. 15%). Three of our patients do not have ID. Epilepsy is present in 63% (vs. 93%). Neurological examination shows a less severe phenotype with significantly less hypotonia (58% vs. 96%), and pyramidal signs (24% vs. 68%). Cognitive regression was noted in 4% (vs. 56% in the literature). Among individuals over 10 years, 56% disclosed neurocognitive regression, with a mean age of onset at 2 years. We describe 8 novel missense variants of EEF1A2. Modeling of the different amino-acid sites shows that the variants associated with a severe phenotype, and the majority of those associated with a moderate phenotype, cluster within the switch II region of the protein and thus may affect GTP exchange. In contrast, variants associated with milder phenotypes may impact secondary functions such as actin binding. We report the largest cohort of individuals with EEF1A2 variants thus far, allowing us to expand the phenotype spectrum and reveal genotype-phenotype correlations.


Asunto(s)
Mutación Missense , Factor 1 de Elongación Peptídica , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Epilepsia/genética , Epilepsia/patología , Estudios de Asociación Genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Factor 1 de Elongación Peptídica/genética , Fenotipo
16.
Am J Med Genet A ; 194(6): e63534, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38318947

RESUMEN

UPF3B encodes the Regulator of nonsense transcripts 3B protein, a core-member of the nonsense-mediated mRNA decay pathway, protecting the cells from the potentially deleterious actions of transcripts with premature termination codons. Hemizygous variants in the UPF3B gene cause a spectrum of neuropsychiatric issues including intellectual disability, autism spectrum disorder, attention deficit hyperactivity disorder, and schizophrenia/childhood-onset schizophrenia (COS). The number of patients reported to date is very limited, often lacking an extensive phenotypical and neuroradiological description of this ultra-rare syndrome. Here we report three subjects harboring UPF3B variants, presenting with variable clinical pictures, including cognitive impairment, central hypotonia, and syndromic features. Patients 1 and 2 harbored novel UPF3B variants-the p.(Lys207*) and p.(Asp429Serfs*27) ones, respectively-while the p.(Arg225Lysfs*229) variant, identified in Patient 3, was already reported in the literature. Novel features in our patients are represented by microcephaly, midface hypoplasia, and brain malformations. Then, we reviewed pertinent literature and compared previously reported subjects to our cases, providing possible insights into genotype-phenotype correlations in this emerging condition. Overall, the detailed phenotypic description of three patients carrying UPF3B variants is useful not only to expand the genotypic and phenotypic spectrum of UPF3B-related disorders, but also to ameliorate the clinical management of affected individuals.


Asunto(s)
Fenotipo , Humanos , Masculino , Femenino , Niño , Proteínas de Unión al ARN/genética , Estudios de Asociación Genética , Preescolar , Mutación/genética , Adolescente , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Predisposición Genética a la Enfermedad
17.
Genet Med ; 26(5): 101097, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38334070

RESUMEN

PURPOSE: Pathogenic variants of FIG4 generate enlarged lysosomes and neurological and developmental disorders. To identify additional genes regulating lysosomal volume, we carried out a genome-wide activation screen to detect suppression of enlarged lysosomes in FIG4-/- cells. METHODS: The CRISPR-a gene activation screen utilized sgRNAs from the promoters of protein-coding genes. Fluorescence-activated cell sorting separated cells with correction of the enlarged lysosomes from uncorrected cells. Patient variants of SLC12A9 were identified by exome or genome sequencing and studied by segregation analysis and clinical characterization. RESULTS: Overexpression of SLC12A9, a solute co-transporter, corrected lysosomal swelling in FIG4-/- cells. SLC12A9 (NP_064631.2) colocalized with LAMP2 at the lysosome membrane. Biallelic variants of SLC12A9 were identified in 3 unrelated probands with neurodevelopmental disorders. Common features included intellectual disability, skeletal and brain structural abnormalities, congenital heart defects, and hypopigmented hair. Patient 1 was homozygous for nonsense variant p.(Arg615∗), patient 2 was compound heterozygous for p.(Ser109Lysfs∗20) and a large deletion, and proband 3 was compound heterozygous for p.(Glu290Glyfs∗36) and p.(Asn552Lys). Fibroblasts from proband 1 contained enlarged lysosomes that were corrected by wild-type SLC12A9 cDNA. Patient variant p.(Asn552Lys) failed to correct the lysosomal defect. CONCLUSION: Impaired function of SLC12A9 results in enlarged lysosomes and a recessive disorder with a recognizable neurodevelopmental phenotype.


Asunto(s)
Lisosomas , Trastornos del Neurodesarrollo , Simportadores de Cloruro de Sodio-Potasio , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Alelos , Mutación con Pérdida de Función/genética , Lisosomas/genética , Lisosomas/metabolismo , Lisosomas/patología , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Linaje , Fenotipo , Simportadores de Cloruro de Sodio-Potasio/genética
18.
Childs Nerv Syst ; 40(6): 1731-1741, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38316674

RESUMEN

BACKGROUND: The optimal timing and surgical approach for surgical revascularization in patients with moyamoya syndrome (MMS) associated with neurofibromatosis type I (NF1) remain so far elusive. We aimed to compare the long-term clinical, radiological, and cognitive effects of different revascularization procedures in a pediatric cohort of NF1-associated MMS. METHODS: We reviewed the clinical, radiological, and surgical data of 26 patients with NF1-associated MMS diagnosed at our institution between 2012 and 2022, at the clinical onset and last follow-up. RESULTS: Indirect bypasses were performed in 12/26 patients (57.1%), while combined direct and indirect procedures in 9/26 subjects (42.9%); 5 patients did not undergo surgery. Through logistic regression analysis, pathological Wechsler Intelligence Scale for Children (WISC) at onset was found to be associated with symptom improvement at 1-year follow up (p = 0.006). No significant differences were found in long-term neurocognitive outcome and stroke rate in patients receiving combined or indirect bypass (p > 0.05). CONCLUSIONS: Currently, whether combined or indirect bypass should be considered the treatment of choice in pediatric patients with NF1-associated MMS remains unclear, as well as the optimal time approach. In our series, no significant differences were found in long-term neurocognitive outcome and stroke rate between patients treated with either of these two approaches. Clinical evidence supports the crucial role of early diagnosis and surgical revascularization in subjects with MMS-associated NF1, even in case of mildly symptomatic vasculopathy. This allows to achieve a good long-term outcome with improved intellectual function and prevention of stroke and seizure in these patients.


Asunto(s)
Revascularización Cerebral , Enfermedad de Moyamoya , Neurofibromatosis 1 , Humanos , Enfermedad de Moyamoya/cirugía , Enfermedad de Moyamoya/complicaciones , Neurofibromatosis 1/complicaciones , Neurofibromatosis 1/cirugía , Femenino , Niño , Masculino , Revascularización Cerebral/métodos , Adolescente , Preescolar , Estudios Retrospectivos , Resultado del Tratamiento , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/prevención & control
19.
Eur J Hum Genet ; 32(3): 342-349, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38177406

RESUMEN

DAG1 encodes for dystroglycan, a key component of the dystrophin-glycoprotein complex (DGC) with a pivotal role in skeletal muscle function and maintenance. Biallelic loss-of-function DAG1 variants cause severe muscular dystrophy and muscle-eye-brain disease. A possible contribution of DAG1 deficiency to milder muscular phenotypes has been suggested. We investigated the genetic background of twelve subjects with persistent mild-to-severe hyperCKemia to dissect the role of DAG1 in this condition. Genetic testing was performed through exome sequencing (ES) or custom NGS panels including various genes involved in a spectrum of muscular disorders. Histopathological and Western blot analyses were performed on muscle biopsy samples obtained from three patients. We identified seven novel heterozygous truncating variants in DAG1 segregating with isolated or pauci-symptomatic hyperCKemia in all families. The variants were rare and predicted to lead to nonsense-mediated mRNA decay or the formation of a truncated transcript. In four cases, DAG1 variants were inherited from similarly affected parents. Histopathological analysis revealed a decreased expression of dystroglycan subunits and Western blot confirmed a significantly reduced expression of beta-dystroglycan in muscle samples. This study supports the pathogenic role of DAG1 haploinsufficiency in isolated or pauci-symptomatic hyperCKemia, with implications for clinical management and genetic counseling.


Asunto(s)
Enfermedades Musculares , Distrofias Musculares , Humanos , Distroglicanos/genética , Distroglicanos/metabolismo , Haploinsuficiencia , Distrofias Musculares/genética , Músculo Esquelético/patología , Enfermedades Musculares/patología
20.
medRxiv ; 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38293053

RESUMEN

Background: We previously described the KINSSHIP syndrome, an autosomal dominant disorder associated with intellectual disability (ID), mesomelic dysplasia and horseshoe kidney,caused by de novo variants in the degron of AFF3. Mouse knock-ins and overexpression in zebrafish provided evidence for a dominant-negative (DN) mode-of-action, wherein an increased level of AFF3 resulted in pathological effects. Methods: Evolutionary constraints suggest that other mode-of-inheritance could be at play. We challenged this hypothesis by screening ID cohorts for individuals with predicted-to-be deleterious variants in AFF3. We used both animal and cellular models to assess the deleteriousness of the identified variants. Results: We identified an individual with a KINSSHIP-like phenotype carrying a de novo partial duplication of AFF3 further strengthening the hypothesis that an increased level of AFF3 is pathological. We also detected seventeen individuals displaying a milder syndrome with either heterozygous LoF or biallelic missense variants in AFF3. Consistent with semi-dominance, we discovered three patients with homozygous LoF and one compound heterozygote for a LoF and a missense variant, who presented more severe phenotypes than their heterozygous parents. Matching zebrafish knockdowns exhibit neurological defects that could be rescued by expressing human AFF3 mRNA, confirming their association with the ablation of aff3. Conversely, some of the human AFF3 mRNAs carrying missense variants identified in affected individuals did not complement. Overexpression of mutated AFF3 mRNAs in zebrafish embryos produced a significant increase of abnormal larvae compared to wild-type overexpression further demonstrating deleteriousness. To further assess the effect of AFF3 variation, we profiled the transcriptome of fibroblasts from affected individuals and engineered isogenic cells harboring +/+, DN/DN, LoF/+, LoF/LoF or DN/LoF AFF3 genotypes. The expression of more than a third of the AFF3 bound loci is modified in either the DN/DN or the LoF/LoF lines. While the same pathways are affected, only about one-third of the differentially expressed genes are common to these homozygote datasets, indicating that AFF3 LoF and DN variants largely modulate transcriptomes differently, e.g. the DNA repair pathway displayed opposite modulation. Conclusions: Our results and the high pleiotropy shown by variation at this locus suggest that minute changes in AFF3 function are deleterious.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA