RESUMEN
The function of cellobiose dehydrogenase (CDH) in biosensors, biofuel cells, and as a physiological redox partner of lytic polysaccharide monooxygenase (LPMO) is based on its role as an electron donor. Before donating electrons to LPMO or electrodes, an interdomain electron transfer from the catalytic FAD-containing dehydrogenase domain to the electron shuttling cytochrome domain of CDH is required. This study investigates the role of two crucial amino acids located at the dehydrogenase domain on domain interaction and interdomain electron transfer by structure-based engineering. The electron transfer kinetics of wild-type Myriococcum thermophilum CDH and its variants M309A, R698S, and M309A/R698S were analyzed by stopped-flow spectrophotometry and structural effects were studied by small-angle X-ray scattering. The data show that R698 is essential to pull the cytochrome domain close to the dehydrogenase domain and orient the heme propionate group towards the FAD, while M309 is an integral part of the electron transfer pathway - its mutation reducing the interdomain electron transfer 10-fold. Structural models and molecular dynamics simulations pinpoint the action of these two residues on the domain interaction and interdomain electron transfer.
Asunto(s)
Deshidrogenasas de Carbohidratos , Electrones , Aminoácidos/metabolismo , Proteínas Fúngicas/química , Transporte de Electrón , Deshidrogenasas de Carbohidratos/química , Oxigenasas de Función Mixta/metabolismo , Polisacáridos/metabolismo , Citocromos/metabolismoRESUMEN
Cellobiose dehydrogenase (CDH) is a bioelectrocatalyst that enables direct electron transfer (DET) in biosensors and biofuel cells. The application of this bidomain hemoflavoenzyme for physiological glucose measurements is limited by its acidic pH optimum and slow interdomain electron transfer (IET) at pH 7.5. The reason for this rate-limiting electron transfer step is electrostatic repulsion at the interface between the catalytic dehydrogenase domain and the electron mediating cytochrome domain (CYT). We applied rational interface engineering to accelerate the IET for the pH prevailing in blood or interstitial fluid. Phylogenetic and structural analyses guided the design of 17 variants in which acidic amino acids were mutated at the CYT domain. Five mutations (G71K, D160K, Q174K, D177K, M180K) increased the pH optimum and IET rate. Structure-based analysis of the variants suggested two mechanisms explaining the improvements: electrostatic steering and stabilization of the closed state by hydrogen bonding. Combining the mutations into six combinatorial variants with up to five mutations shifted the pH optimum from 4.5 to 7.0 and increased the IET at pH 7.5 over 12-fold from 0.1 to 1.24 s-1 . While the mutants sustained a high enzymatic activity and even surpassed the IET of the wild-type enzyme, the accumulated positive charges on the CYT domain decreased DET, highlighting the importance of CYT for IET and DET. This study shows that interface engineering is an effective strategy to shift the pH optimum and improve the IET of CDH, but future work needs to maintain the DET of the CYT domain for bioelectronic applications.
Asunto(s)
Deshidrogenasas de Carbohidratos , Electrones , Filogenia , Deshidrogenasas de Carbohidratos/genética , Deshidrogenasas de Carbohidratos/química , Citocromos/metabolismo , Transporte de Electrón/fisiologíaRESUMEN
Lytic polysaccharide monooxygenase (LPMO) supports biomass hydrolysis by increasing saccharification efficiency and rate. Recent studies demonstrate that H2O2 rather than O2 is the cosubstrate of the LPMO-catalyzed depolymerization of polysaccharides. Some studies have questioned the physiological relevance of the H2O2-based mechanism for plant cell wall degradation. This study reports the localized and time-resolved determination of LPMO activity on poplar wood cell walls by measuring the H2O2 concentration in their vicinity with a piezo-controlled H2O2 microsensor. The investigated Neurospora crassa LPMO binds to the inner cell wall layer and consumes enzymatically generated H2O2. The results point towards a high catalytic efficiency of LPMO at a low H2O2 concentration that auxiliary oxidoreductases in fungal secretomes can easily generate. Measurements with a glucose microbiosensor additionally demonstrate that LPMO promotes cellobiohydrolase activity on wood cell walls and plays a synergistic role in the fungal extracellular catabolism and in industrial biomass degradation.
Asunto(s)
Oxigenasas de Función Mixta , Madera , Oxigenasas de Función Mixta/metabolismo , Madera/metabolismo , Celulosa 1,4-beta-Celobiosidasa , Peróxido de Hidrógeno/metabolismo , Proteínas Fúngicas/metabolismo , Polisacáridos/metabolismo , Oxidorreductasas , Pared Celular/metabolismo , GlucosaRESUMEN
The development of third generation biosensors depends on the availability of direct electron transfer (DET) capable enzymes. A successful strategy is to fuse a cytochrome domain to an enzyme to fulfil the function of a built-in redox mediator between the catalytic center and the electrode. In this study, we fused the cytochrome domain of Neurospora crassa CDH IIA (NcCYT) N-terminally to glucose dehydrogenase from Glomerella cingulata (GcGDH) to generate the chimeric enzyme NcCYT-GcGDH in a large amount for further studies. Heterologous expression in P. pastoris and chromatographic purification resulted in 1.8 g of homogeneous chimeric enzyme. Biochemical and electrochemical characterization confirmed that the chimeric enzyme is catalytically active, able to perform interdomain electron transfer (IET) and direct electron transfer (DET) via the fused cytochrome domain. The midpoint redox potential of the fused b-type cytochrome is 91 mV vs. SHE at pH 6.5 and the specific current obtained on a porous graphite electrode is 2.3 µA cm-2. The high current obtained on this simple, unmodified electrode at a rather low redox potential is a promising starting point for further optimization. The high yield of NcCYT-GcGDH and its high specific activity supports the application of the chimeric enzyme in bioelectrocatalytic applications.
Asunto(s)
Técnicas Biosensibles , Glucosa 1-Deshidrogenasa , Citocromos b , Electrodos , Transporte de Electrón , Electrones , Enzimas Inmovilizadas , Glucosa 1-Deshidrogenasa/genética , Glucosa 1-Deshidrogenasa/metabolismo , Proteínas Recombinantes de Fusión/genéticaRESUMEN
Enzymatic biofuel cells utilize oxidoreductases as highly specific and highly active electrocatalysts to convert a fuel and an oxidant even in complex biological matrices like hydrolysates or physiological fluids into electric energy. The hemoflavoenzyme cellobiose dehydrogenase is investigated as a versatile bioelectrocatalyst for the anode reaction of biofuel cells, because it is robust, converts a range of different carbohydrates, and can transfer electrons to the anode by direct electron transfer or via redox mediators. The versatility of cellobiose dehydrogenase has led to the development of various electrode modifications to create biofuel cells and biosupercapacitors that are capable to power small electronic devices like biosensors and connect them wireless to a receiver.
Asunto(s)
Fuentes de Energía Bioeléctrica , Deshidrogenasas de Carbohidratos , Deshidrogenasas de Carbohidratos/metabolismo , Electrodos , Transporte de ElectrónRESUMEN
The accurate determination of analyte concentrations with selective, fast, and robust methods is the key for process control, product analysis, environmental compliance, and medical applications. Enzyme-based biosensors meet these requirements to a high degree and can be operated with simple, cost efficient, and easy to use devices. This review focuses on enzymes capable of direct electron transfer (DET) to electrodes and also the electrode materials which can enable or enhance the DET type bioelectrocatalysis. It presents amperometric biosensors for the quantification of important medical, technical, and environmental analytes and it carves out the requirements for enzymes and electrode materials in DET-based third generation biosensors. This review critically surveys enzymes and biosensors for which DET has been reported. Single- or multi-cofactor enzymes featuring copper centers, hemes, FAD, FMN, or PQQ as prosthetic groups as well as fusion enzymes are presented. Nanomaterials, nanostructured electrodes, chemical surface modifications, and protein immobilization strategies are reviewed for their ability to support direct electrochemistry of enzymes. The combination of both biosensor elements-enzymes and electrodes-is evaluated by comparison of substrate specificity, current density, sensitivity, and the range of detection.
Asunto(s)
Técnicas Biosensibles/métodos , Electrodos , Electrones , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Biocatálisis , Monitoreo Biológico/métodos , Biomarcadores de Tumor/análisis , Glucemia/análisis , Automonitorización de la Glucosa Sanguínea/métodos , Coenzimas/metabolismo , Electroquímica/métodos , Transporte de Electrón , Estructura Molecular , Nanoestructuras/químicaRESUMEN
Glyoxal oxidase (GLOX) is an extracellular source of H2O2 in white-rot secretomes, where it acts in concert with peroxidases to degrade lignin. It has been reported that GLOX requires activation prior to catalytic turnover and that a peroxidase system can fulfill this task. In this study, we verify that an oxidation product of horseradish peroxidase, the radical cation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), is an activator for GLOX. A spectroelectrochemical cell was used to generate the activating radical species, to continuously measure its concentration, and to simultaneously measure the catalytic activity of GLOX based on its O2 consumption. The results show that GLOX can undergo multiple catalytic turnovers upon activation and that activity increases with the activator concentration. However, we also found that the ABTS cation radical can serve as an electron acceptor which becomes visible in the absence of O2. Furthermore, GLOX activity is highly restrained by the naturally occurring, low O2 concentration. We conclude that GLOX is indeed an auxiliary enzyme for H2O2 production in white-rot secretomes. Its turnover rate is strongly regulated by the availability of O2 and the radical generating activity of peroxidases present in the secretome, which acts as a feedback loop for GLOX activity.
Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Técnicas Electroquímicas/métodos , Análisis Espectral/métodos , Benzotiazoles/química , Catálisis , Activación Enzimática , Peróxido de Hidrógeno/metabolismo , Oxígeno/metabolismo , Reproducibilidad de los Resultados , Ácidos Sulfónicos/químicaRESUMEN
Enzymatic hydrolysis of lignocellulosic biomass for biofuel production relies on complex multi-enzyme ensembles. Continuous and accurate measurement of the released key products is crucial in optimizing the industrial degradation process and also investigating the activity and interaction between the involved enzymes and the insoluble substrate. Amperometric biosensors have been applied to perform continuous cellobiose measurements during the enzymatic hydrolysis of pure cellulose powders. The oxygen-sensitive mediators used in these biosensors restricted their function under physiological or industrial conditions. Also, the combined measurements of the hydrolysis products cellobiose and glucose require a high selectivity of the biorecognition elements. We employed an [Os(2,2'-bipyridine)2Cl]Cl-modified polymer and cellobiose dehydrogenase to fabricate a cellobiose biosensor, which can accurately and specifically detect cellobiose even in the presence of oxygen and the other main product glucose. Additionally, a glucose biosensor was fabricated to simultaneously measure glucose produced from cellobiose by ß-glucosidases. The cellobiose and glucose biosensors work at applied potentials of +0.25 and +0.45 V versus Ag|AgCl (3 M KCl), respectively, and can selectively detect their substrate. Both biosensors were used in combination to monitor the hydrolysis of pure cellulose of low crystallinity or industrial corncob samples. The obtained results correlate with the high-performance liquid chromatography pulsed amperometric detection analysis and demonstrate that neither oxygen nor the presence of redox-active compounds from the lignin fraction of the corncob interferes with the measurements.
Asunto(s)
Celobiosa , Celulasas , Biomasa , Glucosa , HidrólisisRESUMEN
The natural function of cellobiose dehydrogenase (CDH) to donate electrons from its catalytic flavodehydrogenase (DH) domain via its cytochrome (CYT) domain to lytic polysaccharide monooxygenase (LPMO) is an example of a highly efficient extracellular electron transfer chain. To investigate the function of the CYT domain movement in the two occurring electron transfer steps, two CDHs from the ascomycete Neurospora crassa (NcCDHIIA and NcCDHIIB) and five chimeric CDH enzymes created by domain swapping were studied in combination with the fungus' own LPMOs (NcLPMO9C and NcLPMO9F). Kinetic and electrochemical methods and hydrogen/deuterium exchange mass spectrometry were used to study the domain movement, interaction, and electron transfer kinetics. Molecular docking provided insights into the protein-protein interface, the orientation of domains, and binding energies. We find that the first, interdomain electron transfer step from the catalytic site in the DH domain to the CYT domain depends on steric and electrostatic interface complementarity and the length of the protein linker between both domains but not on the redox potential difference between the FAD and heme b cofactors. After CYT reduction, a conformational change of CDH from its closed state to an open state allows the second, interprotein electron transfer (IPET) step from CYT to LPMO to occur by direct interaction of the b-type heme and the type-2 copper center. Chimeric CDH enzymes favor the open state and achieve higher IPET rates by exposing the heme b cofactor to LPMO. The IPET, which is influenced by interface complementarity and the heme b redox potential, is very efficient with bimolecular rates between 2.9 × 105 and 1.1 × 106 M-1 s-1.
RESUMEN
BACKGROUND: Lytic polysaccharide monooxygenases (LPMOs) are powerful enzymes that oxidatively cleave plant cell wall polysaccharides. LPMOs classified as fungal Auxiliary Activities family 9 (AA9) have been mainly studied for their activity towards cellulose; however, various members of this AA9 family have been also shown to oxidatively cleave hemicelluloses, in particularly xyloglucan (XG). So far, it has not been studied in detail how various AA9 LPMOs act in XG degradation, and in particular, how the mode-of-action relates to the structural configuration of these LPMOs. RESULTS: Two Neurospora crassa (Nc) LPMOs were found to represent different mode-of-action towards XG. Interestingly, the configuration of active site segments of these LPMOs differed as well, with a shorter Segment 1 (-Seg1) and a longer Segment 2 (+Seg2) present in NcLPMO9C and the opposite for NcLPMO9M (+Seg1-Seg2). We confirmed that NcLPMO9C cleaved the non-reducing end of unbranched glucosyl residues within XG via the oxidation of the C4-carbon. In contrast, we found that the oxidative cleavage of the XG backbone by NcLPMO9M occurred next to both unbranched and substituted glucosyl residues. The latter are decorated with xylosyl, xylosyl-galactosyl and xylosyl-galactosyl-fucosyl units. The relationship between active site segments and the mode-of-action of these NcLPMOs was rationalized by a structure-based phylogenetic analysis of fungal AA9 LPMOs. LPMOs with a -Seg1+Seg2 configuration clustered together and appear to have a similar XG substitution-intolerant cleavage pattern. LPMOs with the +Seg1-Seg2 configuration also clustered together and are reported to display a XG substitution-tolerant cleavage pattern. A third cluster contained LPMOs with a -Seg1-Seg2 configuration and no oxidative XG activity. CONCLUSIONS: The detailed characterization of XG degradation products released by LPMOs reveal a correlation between the configuration of active site segments and mode-of-action of LPMOs. In particular, oxidative XG-active LPMOs, which are tolerant and intolerant to XG substitutions are structurally and phylogenetically distinguished from XG-inactive LPMOs. This study contributes to a better understanding of the structure-function relationship of AA9 LPMOs.
RESUMEN
Large-scale protein domain dynamics and electron transfer are often associated. However, as protein motions span a broad range of time and length scales, it is often challenging to identify and thus link functionally relevant dynamic changes to electron transfer in proteins. It is hypothesized that large-scale domain motions direct electrons through a FAD and a heme b cofactor of the fungal cellobiose dehydrogenase (CDH) enzymes to the type-II copper center (T2Cu) of the polysaccharide-degrading lytic polysaccharide monooxygenases (LPMOs). However, as of yet, domain motions in CDH have not been linked formally to enzyme-catalyzed electron transfer reactions. The detailed structural features of CDH, which govern the functional conformational landscapes of the enzyme, have only been partially resolved. Here, we use a combination of pressure, viscosity, ionic strength, and temperature perturbation stopped-flow studies to probe the conformational landscape associated with the electron transfer reactions of CDH. Through the use of molecular dynamics simulations, potentiometry, and stopped-flow spectroscopy, we investigated how a conserved Tyr99 residue plays a key role in shaping the conformational landscapes for both the interdomain electron transfer reactions of CDH (from FAD to heme) and the delivery of electrons from the reduced heme cofactor to the LPMO T2Cu. Our studies show how motions gate the electron transfer within CDH and from CDH to LPMO and illustrate the conformational landscape for interdomain and interprotein electron transfer in this extracellular fungal electron transfer chain.
RESUMEN
Cellobiose dehydrogenase (CDH) is a flavocytochrome with a history of bioelectrochemical research dating back to 1992. During the years, it has been shown to be capable of mediated electron transfer (MET) and direct electron transfer (DET) to a variety of electrodes. This versatility of CDH originates from the separation of the catalytic flavodehydrogenase domain and the electron transferring cytochrome domain. This uncoupling of the catalytic reaction from the electron transfer process allows the application of CDH on many different electrode materials and surfaces, where it shows robust DET. Recent X-ray diffraction and small angle scattering studies provided insights into the structure of CDH and its domain mobility, which can change between a closed-state and an open-state conformation. This structural information verifies the electron transfer mechanism of CDH that was initially established by bioelectrochemical methods. A combination of DET and MET experiments has been used to investigate the catalytic mechanism and the electron transfer process of CDH and to deduce a protein structure comprising of mobile domains. Even more, electrochemical methods have been used to study the redox potentials of the FAD and the haem b cofactors of CDH or the electron transfer rates. These electrochemical experiments, their results and the application of the characterised CDHs in biosensors, biofuel cells and biosupercapacitors are combined with biochemical and structural data to provide a thorough overview on CDH as versatile bioelectrocatalyst.
Asunto(s)
Deshidrogenasas de Carbohidratos/metabolismo , Técnicas Electroquímicas/métodos , Biocatálisis , Fuentes de Energía Bioeléctrica , Deshidrogenasas de Carbohidratos/clasificación , Transporte de ElectrónRESUMEN
In past years, new lytic polysaccharide monooxygenases (LPMOs) have been discovered as distinct in their substrate specificity. Their unconventional, surface-exposed catalytic sites determine their enzymatic activities, while binding sites govern substrate recognition and regioselectivity. An additional factor influencing activity is the presence or absence of a family 1 carbohydrate binding module (CBM1) connected via a linker to the C-terminus of the LPMO. This study investigates the changes in activity induced by shortening the second active site segment (Seg2) or removing the CBM1 from Neurospora crassa LPMO9C. NcLPMO9C and generated variants have been tested on regenerated amorphous cellulose (RAC), carboxymethyl cellulose (CMC) and xyloglucan (XG) using activity assays, conversion experiments and surface plasmon resonance spectroscopy. The absence of CBM1 reduced the binding affinity and activity of NcLPMO9C, but did not affect its regioselectivity. The linker was found important for the thermal stability of NcLPMO9C and the CBM1 is necessary for efficient binding to RAC. Wild-type NcLPMO9C exhibited the highest activity and strongest substrate binding. Shortening of Seg2 greatly reduced the activity on RAC and CMC and completely abolished the activity on XG. This demonstrates that Seg2 is indispensable for substrate recognition and the formation of productive enzyme-substrate complexes.
Asunto(s)
Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/metabolismo , Neurospora crassa/enzimología , Sitios de Unión , Carboximetilcelulosa de Sodio/metabolismo , Dominio Catalítico , Celulosa/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glucanos/metabolismo , Oxigenasas de Función Mixta/genética , Neurospora crassa/genética , Eliminación de Secuencia , Resonancia por Plasmón de Superficie , Xilanos/metabolismoRESUMEN
Fungal high redox potential laccases are proposed as cathodic biocatalysts in implantable enzymatic fuel cells to generate high cell voltages. Their application is limited mainly through their acidic pH optimum and chloride inhibition. This work investigates evolutionary and engineering strategies to increase the pH optimum of a chloride-tolerant, high redox potential laccase from the ascomycete Botrytis aclada. The laccase was subjected to two rounds of directed evolution and the clones screened for increased stability and activity at pH 6.5. Beneficial mutation sites were investigated by semi-rational and combinatorial mutagenesis. Fourteen variants were characterised in detail to evaluate changes of the kinetic constants. Mutations increasing thermostability were distributed over the entire structure. Among them, T383I showed a 2.6-fold increased half-life by preventing the loss of the T2 copper through unfolding of a loop. Mutations affecting the pH-dependence cluster around the T1 copper and categorise in three types of altered pH profiles: pH-type I changes the monotonic decreasing pH profile into a bell-shaped profile, pH-type II describes increased specific activity below pH 6.5, and pH-type III increased specific activity above pH 6.5. Specific activities of the best variants were up to 5-fold higher (13 U mg-1) than BaL WT at pH 7.5.
Asunto(s)
Fuentes de Energía Bioeléctrica , Botrytis/enzimología , Proteínas Fúngicas/metabolismo , Lacasa/metabolismo , Botrytis/genética , Simulación por Computador , Estabilidad de Enzimas , Proteínas Fúngicas/genética , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Cinética , Lacasa/genética , Modelos Moleculares , Mutación , Oxidación-Reducción , Ingeniería de Proteínas , TemperaturaRESUMEN
Lytic polysaccharide monooxygenases (LPMOs) represent a recent addition to the carbohydrate-active enzymes and are classified as auxiliary activity (AA) families 9, 10, 11, and 13. LPMOs are crucial for effective degradation of recalcitrant polysaccharides like cellulose or chitin. These enzymes are copper-dependent and utilize a redox mechanism to cleave glycosidic bonds that is dependent on molecular oxygen and an external electron donor. The electrons can be provided by various sources, such as chemical compounds (e.g., ascorbate) or by enzymes (e.g., cellobiose dehydrogenases, CDHs, from fungi). Here, we demonstrate that a fungal CDH from Myriococcum thermophilum (MtCDH), can act as an electron donor for bacterial family AA10 LPMOs. We show that employing an enzyme as electron donor is advantageous since this enables a kinetically controlled supply of electrons to the LPMO. The rate of chitin oxidation by CBP21 was equal to that of cosubstrate (lactose) oxidation by MtCDH, verifying the usage of two electrons in the LPMO catalytic mechanism. Furthermore, since lactose oxidation correlates directly with the rate of LPMO catalysis, a method for indirect determination of LPMO activity is implicated. Finally, the one electron reduction of the CBP21 active site copper by MtCDH was determined to be substantially faster than chitin oxidation by the LPMO. Overall, MtCDH seems to be a universal electron donor for both bacterial and fungal LPMOs, indicating that their electron transfer mechanisms are similar.
Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas/química , Deshidrogenasas de Carbohidratos/química , Proteínas Fúngicas/química , Oxigenasas de Función Mixta/química , Sordariales/enzimología , Quitina/química , Lactosa/química , Oxidación-ReducciónRESUMEN
Recently, a novel pathway for heme b biosynthesis in Gram-positive bacteria has been proposed. The final poorly understood step is catalyzed by an enzyme called HemQ and includes two decarboxylation reactions leading from coproheme to heme b. Coproheme has been suggested to act as both substrate and redox active cofactor in this reaction. In the study presented here, we focus on HemQs from Listeria monocytogenes (LmHemQ) and Staphylococcus aureus (SaHemQ) recombinantly produced as apoproteins in Escherichia coli. We demonstrate the rapid and two-phase uptake of coproheme by both apo forms and the significant differences in thermal stability of the apo forms, coproheme-HemQ and heme b-HemQ. Reduction of ferric high-spin coproheme-HemQ to the ferrous form is shown to be enthalpically favored but entropically disfavored with standard reduction potentials of -205 ± 3 mV for LmHemQ and -207 ± 3 mV for SaHemQ versus the standard hydrogen electrode at pH 7.0. Redox thermodynamics suggests the presence of a pronounced H-bonding network and restricted solvent mobility in the heme cavity. Binding of cyanide to the sixth coproheme position is monophasic but relatively slow (â¼1 × 10(4) M(-1) s(-1)). On the basis of the available structures of apo-HemQ and modeling of both loaded forms, molecular dynamics simulation allowed analysis of the interaction of coproheme and heme b with the protein as well as the role of the flexibility at the proximal heme cavity and the substrate access channel for coproheme binding and heme b release. Obtained data are discussed with respect to the proposed function of HemQ in monoderm bacteria.
Asunto(s)
Hemo/química , Simulación de Dinámica Molecular , Dicroismo Circular , Espectroscopía de Resonancia por Spin del Electrón , Cinética , Ligandos , Filogenia , Espectrofotometría UltravioletaRESUMEN
Ninety percent of lignocellulose-degrading fungi contain genes encoding lytic polysaccharide monooxygenases (LPMOs). These enzymes catalyze the initial oxidative cleavage of recalcitrant polysaccharides after activation by an electron donor. Understanding the source of electrons is fundamental to fungal physiology and will also help with the exploitation of LPMOs for biomass processing. Using genome data and biochemical methods, we characterized and compared different extracellular electron sources for LPMOs: cellobiose dehydrogenase, phenols procured from plant biomass or produced by fungi, and glucose-methanol-choline oxidoreductases that regenerate LPMO-reducing diphenols. Our data demonstrate that all three of these electron transfer systems are functional and that their relative importance during cellulose degradation depends on fungal lifestyle. The availability of extracellular electron donors is required to activate fungal oxidative attack on polysaccharides.
Asunto(s)
Proteínas Fúngicas/química , Hongos/enzimología , Lignina/química , Oxigenasas de Función Mixta/química , Biocatálisis , Transporte de Electrón , Proteínas Fúngicas/genética , Hongos/genética , Genoma Fúngico , Oxigenasas de Función Mixta/genética , Oxidación-ReducciónRESUMEN
Pyranose dehydrogenase (PDH) is a monomeric flavoprotein belonging to the glucose-methanol-choline (GMC) family of oxidoreductases. It catalyzes the oxidation of free, non-phosphorylated sugars to the corresponding keto sugars. The enzyme harbors an FAD cofactor that is covalently attached to histidine 103 via an 8α-N(3) histidyl linkage. Our previous work showed that variant H103Y was still able to bind FAD (non-covalently) and perform catalysis but steady-state kinetic parameters for several substrates were negatively affected. In order to investigate the impact of the covalent FAD attachment in Agaricus meleagris PDH in more detail, pre-steady-state kinetics, reduction potential and stability of the variant H103Y in comparison to the wild-type enzyme were probed. Stopped-flow analysis revealed that the mutation slowed down the reductive half-reaction by around three orders of magnitude whereas the oxidative half-reaction was affected only to a minor degree. This was reflected by a decrease in the standard reduction potential of variant H103Y compared to the wild-type protein. The existence of an anionic semiquinone radical in the resting state of both the wild-type and variant H103Y was demonstrated using electron paramagnetic resonance (EPR) spectroscopy and suggested a higher mobility of the cofactor in the variant H103Y. Unfolding studies showed significant negative effects of the disruption of the covalent bond on thermal and conformational stability. The results are discussed with respect to the role of covalently bound FAD in catalysis and stability.
Asunto(s)
Agaricus/enzimología , Biocatálisis , Flavina-Adenina Dinucleótido/metabolismo , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Benzoquinonas/metabolismo , Metabolismo de los Hidratos de Carbono , Estabilidad de Enzimas , Oxidación-Reducción , Conformación Proteica , TemperaturaRESUMEN
The genome of Neurospora crassa encodes two different cellobiose dehydrogenases (CDHs) with a sequence identity of only 53%. So far, only CDH IIA, which is induced during growth on cellulose and features a C-terminal carbohydrate binding module (CBM), was detected in the secretome of N. crassa and preliminarily characterized. CDH IIB is not significantly upregulated during growth on cellulosic material and lacks a CBM. Since CDH IIB could not be identified in the secretome, both CDHs were recombinantly produced in Pichia pastoris. With the cytochrome domain-dependent one-electron acceptor cytochrome c, CDH IIA has a narrower and more acidic pH optimum than CDH IIB. Interestingly, the catalytic efficiencies of both CDHs for carbohydrates are rather similar, but CDH IIA exhibits 4- to 5-times-higher apparent catalytic constants (k(cat) and K(m) values) than CDH IIB for most tested carbohydrates. A third major difference is the 65-mV-lower redox potential of the heme b cofactor in the cytochrome domain of CDH IIA than CDH IIB. To study the interaction with a member of the glycoside hydrolase 61 family, the copper-dependent polysaccharide monooxygenase GH61-3 (NCU02916) from N. crassa was expressed in P. pastoris. A pH-dependent electron transfer from both CDHs via their cytochrome domains to GH61-3 was observed. The different properties of CDH IIA and CDH IIB and their effect on interactions with GH61-3 are discussed in regard to the proposed in vivo function of the CDH/GH61 enzyme system in oxidative cellulose hydrolysis.