Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 298
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Blood Adv ; 8(19): 5100-5111, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39121370

RESUMEN

ABSTRACT: Acute myeloid leukemia (AML) with the t(7;12)(q36;p13) translocation occurs only in very young children and has a poor clinical outcome. The expected oncofusion between break point partners (motor neuron and pancreas homeobox 1 [MNX1] and ETS variant transcription factor 6 [ETV6]) has only been reported in a subset of cases. However, a universal feature is the strong transcript and protein expression of MNX1, a homeobox transcription factor that is normally not expressed in hematopoietic cells. Here, we map the translocation break points on chromosomes 7 and 12 in affected patients to a region proximal to MNX1 and either introns 1 or 2 of ETV6. The frequency of MNX1 overexpression in pediatric AML is 2.4% and occurs predominantly in t(7;12)(q36;p13) AML. Chromatin interaction assays in a t(7;12)(q36;p13) induced pluripotent stem cell line model unravel an enhancer-hijacking event that explains MNX1 overexpression in hematopoietic cells. Our data suggest that enhancer hijacking may be a more widespread consequence of translocations in which no oncofusion product was identified, including t(1;3) or t(4;12) AML.


Asunto(s)
Cromosomas Humanos Par 7 , Elementos de Facilitación Genéticos , Proteínas de Homeodominio , Leucemia Mieloide Aguda , Regiones Promotoras Genéticas , Factores de Transcripción , Translocación Genética , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Niño , Cromosomas Humanos Par 7/genética , Regulación Leucémica de la Expresión Génica , Preescolar , Proteína ETS de Variante de Translocación 6 , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Masculino , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Proto-Oncogénicas c-ets/metabolismo , Lactante , Femenino , Adolescente
3.
Best Pract Res Clin Haematol ; 37(2): 101552, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39098796

RESUMEN

Chronic myeloid leukemia is defined by the presence of the Philadelphia translocation t (9; 22) resulting in the BCR::ABL1 fusion. The other myeloproliferative neoplasms (MPN) subtypes also carry typical chromosomal abnormalities, which however are not pathognomonic for a specific entity of MPN. According to the WHO classification the distinction between these entities is still based on the integration of cytological, histopathological and molecular findings. Progression of CML into accelerated and blastic phase is usually driven by additional chromosome abnormalities and ABL1 kinase mutations. In the other MPN subtypes the additional mutations besides driver gene mutations in JAK2, MPL and CALR have a decisive impact on the propensity for progression. In addition, the sequence in which the driver mutations and risk conveying additional mutations have been acquired appears to play an important role. Here, we review cytogenetic and molecular changes in CML and MPN that should be evaluated during diagnosis and disease monitoring.


Asunto(s)
Janus Quinasa 2 , Leucemia Mielógena Crónica BCR-ABL Positiva , Mutación , Trastornos Mieloproliferativos , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Leucemia Mielógena Crónica BCR-ABL Positiva/diagnóstico , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/diagnóstico , Trastornos Mieloproliferativos/patología , Janus Quinasa 2/genética , Aberraciones Cromosómicas , Genómica/métodos , Proteínas de Fusión bcr-abl/genética , Receptores de Trombopoyetina/genética , Calreticulina/genética , Translocación Genética
4.
J Community Genet ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158769

RESUMEN

Patients with hereditary breast and ovarian cancer (HBOC) are not only concerned about their own health but also about that of their children, grandchildren, and other relatives. Therefore, they have specific needs for information and support. During genetic counseling guidance is provided to HBOC patients and other individuals who may be at risk for familial cancer. The purpose of the study was to identify the needs of HBOC patients during the genetic counseling process that could be addressed by digital solutions. Nine semi-structured qualitative interviews were conducted. Overall, the patients appreciated the personal contact with human geneticists as an especially positive factor in the genetic counseling process. However, patients noted the following needs (1) support in the time following genetic counseling, (2) support before genetic counseling by collecting own and familial medical information, (3) Need for contact options to support services, (4) Need for patient-friendly medical information, (5) Wish for administration-related components in a support app. The results will inform the development of a patient-centered mobile support app.

5.
EBioMedicine ; 104: 105171, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38810562

RESUMEN

BACKGROUND: The increasing volume and intricacy of sequencing data, along with other clinical and diagnostic data, like drug responses and measurable residual disease, creates challenges for efficient clinical comprehension and interpretation. Using paediatric B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) as a use case, we present an artificial intelligence (AI)-assisted clinical framework clinALL that integrates genomic and clinical data into a user-friendly interface to support routine diagnostics and reveal translational insights for hematologic neoplasia. METHODS: We performed targeted RNA sequencing in 1365 cases with haematological neoplasms, primarily paediatric B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) from the AIEOP-BFM ALL study. We carried out fluorescence in situ hybridization (FISH), karyotyping and arrayCGH as part of the routine diagnostics. The analysis results of these assays as well as additional clinical information were integrated into an interactive web interface using Bokeh, where the main graph is based on Uniform Manifold Approximation and Projection (UMAP) analysis of the gene expression data. At the backend of the clinALL, we built both shallow machine learning models and a deep neural network using Scikit-learn and PyTorch respectively. FINDINGS: By applying clinALL, 78% of undetermined patients under the current diagnostic protocol were stratified, and ambiguous cases were investigated. Translational insights were discovered, including IKZF1plus status dependent subpopulations of BCR::ABL1 positive patients, and a subpopulation within ETV6::RUNX1 positive patients that has a high relapse frequency. Our best machine learning models, LDA and PASNET-like neural network models, achieve F1 scores above 97% in predicting patients' subgroups. INTERPRETATION: An AI-assisted clinical framework that integrates both genomic and clinical data can take full advantage of the available data, improve point-of-care decision-making and reveal clinically relevant insights promptly. Such a lightweight and easily transferable framework works for both whole transcriptome data as well as the cost-effective targeted RNA-seq, enabling efficient and equitable delivery of personalized medicine in small clinics in developing countries. FUNDING: German Ministry of Education and Research (BMBF), German Research Foundation (DFG) and Foundation for Polish Science.


Asunto(s)
Inteligencia Artificial , Investigación Biomédica Traslacional , Humanos , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Biología Computacional/métodos , Niño , Hibridación Fluorescente in Situ/métodos , Femenino , Masculino , Biomarcadores de Tumor/genética , Perfilación de la Expresión Génica/métodos
9.
Clin Genet ; 104(2): 174-185, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37157876

RESUMEN

Wilson's disease (WD, MIM#277900) is an autosomal recessive disorder resulting in copper excess caused by biallelic variants in the ATP7B gene (MIM#606882) encoding a copper transporting P-type ATPase. ATP7B variants of unknown significance (VUS) are detected frequently, sometimes impeding a clear diagnosis. Functional analyses can help to classify these variants as benign or pathogenic. Additionally, variants already classified as (likely) pathogenic benefit from functional analyses to understand their pathomechanism, thus contribute to the development of personalized treatment approaches in the future. We described clinical features of six WD patients and functionally characterized five ATP7B missense variants (two VUS, three yet uncharacterized likely pathogenic variants), detected in these patients. We determined the protein level, copper export capacity, and cellular localization in an in vitro model and potential structural consequences using an ATP7B protein model based on AlphaFold. Our analyses give insight into the pathomechanism and allowed reclassification for the two VUS to likely pathogenic and for two of the three likely pathogenic variants to pathogenic.


Asunto(s)
ATPasas Transportadoras de Cobre , Degeneración Hepatolenticular , Humanos , Cobre , ATPasas Transportadoras de Cobre/genética , Degeneración Hepatolenticular/diagnóstico , Degeneración Hepatolenticular/genética , Mutación Missense/genética
10.
Am J Med Genet A ; 191(7): 1849-1857, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37081310

RESUMEN

Partial deletions at chromosome 7q11.23 are causative for the autosomal-dominant Williams-Beuren syndrome (WBS), whereas the partial duplication of this region leads to the 7q11.23 duplication syndrome. Both syndromes are highly penetrant and occur with a frequency of 1:7500-10,000 (WBS) and 1:13,000-20,000 (7q11.23 duplication syndrome). They are associated with multiple organ defects, intellectual disability, and typical facial dysmorphisms showing broad phenotypic variability. The 7q11.23 region is susceptible to chromosomal rearrangements due to flanking segmental duplications and regions of long repetitive DNA segments. Here, we report on a family with two children affected by WBS and clinically unaffected parents. Interestingly, metaphase fluorescence in situ hybridization (FISH) revealed a deletion on 7q11.23 in the father. Intensive genetic testing, using interphase FISH, whole genome sequencing and optical genome mapping led to the confirmation of a 1.5 Mb deletion at one 7q11.23 allele and the identification of a reciprocal 1.8 Mb duplication at the other allele. This finding is highly important regarding genetic counseling in this family. The father is a silent carrier for two syndromic disorders, thus his risk to transmit a disease-causing allele is 100%. To the best of our knowledge we, here, report on the first case in which the phenotype of a microdeletion/microduplication syndrome was compensated by its reciprocal counterpart.


Asunto(s)
Síndrome de Williams , Humanos , Hibridación Fluorescente in Situ , Síndrome de Williams/genética , Pruebas Genéticas , Fenotipo , Aberraciones Cromosómicas , Cromosomas Humanos Par 7/genética , Deleción Cromosómica
11.
Front Genet ; 14: 1065907, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36777733

RESUMEN

Monogenic autoinflammatory diseases (AID) encompass a growing group of inborn errors of the innate immune system causing unprovoked or exaggerated systemic inflammation. Diagnosis of monogenic AID requires an accurate description of the patients' phenotype, and the identification of highly penetrant genetic variants in single genes is pivotal. We performed whole exome sequencing (WES) of 125 pediatric patients with suspected monogenic AID in a routine genetic diagnostic setting. Datasets were analyzed in a step-wise approach to identify the most feasible diagnostic strategy. First, we analyzed a virtual gene panel including 13 genes associated with known AID and, if no genetic diagnosis was established, we then analyzed a virtual panel including 542 genes published by the International Union of Immunological Societies associated including all known inborn error of immunity (IEI). Subsequently, WES data was analyzed without pre-filtering for known AID/IEI genes. Analyzing 13 genes yielded a definite diagnosis in 16.0% (n = 20). The diagnostic yield was increased by analyzing 542 genes to 20.8% (n = 26). Importantly, expanding the analysis to WES data did not increase the diagnostic yield in our cohort, neither in single WES analysis, nor in trio-WES analysis. The study highlights that the cost- and time-saving analysis of virtual gene panels is sufficient to rapidly confirm the differential diagnosis in pediatric patients with AID. WES data or trio-WES data analysis as a first-tier diagnostic analysis in patients with suspected monogenic AID is of limited benefit.

12.
Eur J Med Genet ; 66(5): 104718, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36764384

RESUMEN

Soft tissue sarcomas (STS) may arise as a consequence of germline variants in cancer predisposition genes (CPGs). We believe that elucidating germline sarcoma predisposition is critical for understanding disease biology and therapeutic requirements. Participation in surveillance programs may allow for early tumor detection, early initiation of therapy and, ultimately, better outcomes. Among children, adolescents, and adults diagnosed with soft-tissue sarcomas and examined as part of published germline sequencing studies, pathogenic/likely pathogenic (P/LP) variants in CPGs were reported in 7-33% of patients. P/LP germline variants were detected most frequently in TP53, NF1 and BRCA1/2. In this review, we describe reported associations between soft tissue sarcomas and germline variants in CPGs, with mentioning of locally aggressive and benign soft tissue tumors that have important associations with cancer predisposition syndromes. We also discuss recommendations for diagnostic germline genetic testing. Testing for sarcoma-predisposing germline variants should be considered as part of the routine clinical workup and care of any child, adolescent, or adult diagnosed with STS and take into account consequences for the whole family.


Asunto(s)
Sarcoma , Neoplasias de los Tejidos Blandos , Humanos , Niño , Adolescente , Adulto Joven , Predisposición Genética a la Enfermedad , Sarcoma/diagnóstico , Sarcoma/genética , Mutación de Línea Germinal , Pruebas Genéticas , Neoplasias de los Tejidos Blandos/genética
13.
Eur J Med Genet ; 66(4): 104727, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36775010

RESUMEN

Although hematologic malignancies (HM) are no longer considered exclusively sporadic, additional awareness of familial cases has yet to be created. Individuals carrying a (likely) pathogenic germline variant (e.g., in ETV6, GATA2, SAMD9, SAMD9L, or RUNX1) are at an increased risk for developing HM. Given the clinical and psychological impact associated with the diagnosis of a genetic predisposition to HM, it is of utmost importance to provide high-quality, standardized patient care. To address these issues and harmonize care across Europe, the Familial Leukemia Subnetwork within the ERN PaedCan has been assigned to draft an European Standard Clinical Practice (ESCP) document reflecting current best practices for pediatric patients and (healthy) relatives with (suspected) familial leukemia. The group was supported by members of the German network for rare diseases MyPred, of the Host Genome Working Group of SIOPE, and of the COST action LEGEND. The ESCP on familial leukemia is proposed by an interdisciplinary team of experts including hematologists, oncologists, and human geneticists. It is intended to provide general recommendations in areas where disease-specific recommendations do not yet exist. Here, we describe key issues for the medical care of familial leukemia that shall pave the way for a future consensus guideline: (i) identification of individuals with or suggestive of familial leukemia, (ii) genetic analysis and variant interpretation, (iii) genetic counseling and patient education, and (iv) surveillance and (psychological) support. To address the question on how to proceed with individuals suggestive of or at risk of familial leukemia, we developed an algorithm covering four different, partially linked clinical scenarios, and additionally a decision tree to guide clinicians in their considerations regarding familial leukemia in minors with HM. Our recommendations cover, not only patients but also relatives that both should have access to adequate medical care. We illustrate the importance of natural history studies and the need for respective registries for future evidence-based recommendations that shall be updated as new evidence-based standards are established.


Asunto(s)
Predisposición Genética a la Enfermedad , Leucemia , Humanos , Niño , Asesoramiento Genético , Mutación de Línea Germinal , Factores de Transcripción , Péptidos y Proteínas de Señalización Intracelular
15.
Cancer Genet ; 272-273: 29-34, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36657267

RESUMEN

Myeloid/lymphoid neoplasms with eosinophilia (MLN-eos) are rare haematological neoplasms primarily affecting adults. The heterogeneous clinical picture and the rarity of the disease, especially in children, may delay an early diagnosis. MLN-eos are characterized by constitutive tyrosine kinase (TK) activity due to gene fusions. It is thus of importance to obtain a prompt genetic diagnosis to start a specific therapy. Here, we outline the clinical, genetic, and biochemical background of TK driven MLN-eos and report two extremely rare paediatric cases of MLN-eo, the used diagnostic methods, therapy and clinical outcomes. Our results demonstrate that, standard cytogenetic and molecular methods may not be sufficient to diagnose MLN-eo due to cytogenetically cryptic aberrations. We therefore recommend performing additional evaluation with fluorescence in-situ hybridization and molecular genetic methods (array-based comparative genomic hybridization and RNA sequencing) which will lead to the correct diagnosis. Following this diagnostic route we detected a TNIP1::PDGFRB and a PCM1::FGFR1 fusion in our patients. Thus, genetic diagnosis must be precise and quick in order to initiate adequate therapies with tyrosine kinase inhibitors or HSCT.


Asunto(s)
Eosinofilia , Trastornos Mieloproliferativos , Neoplasias , Adulto , Humanos , Niño , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Hibridación Genómica Comparativa , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/tratamiento farmacológico , Eosinofilia/genética , Proteínas de Fusión Oncogénica/genética , Proteínas de Unión al ADN/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética
16.
Med Genet ; 35(4): 301, 2023 Dec.
Artículo en Alemán | MEDLINE | ID: mdl-38841548
17.
Clin Epigenetics ; 14(1): 148, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36376973

RESUMEN

BACKGROUND: The molecular pathogenesis of T-cell large granular lymphocytic leukemia (T-LGLL), a mature T-cell leukemia arising commonly from T-cell receptor αß-positive CD8+ memory cytotoxic T cells, is only partly understood. The role of deregulated methylation in T-LGLL is not well known. We analyzed the epigenetic profile of T-LGLL cells of 11 patients compared to their normal counterparts by array-based DNA methylation profiling. For identification of molecular events driving the pathogenesis of T-LGLL, we compared the differentially methylated loci between the T-LGLL cases and normal T cells with chromatin segmentation data of benign T cells from the BLUEPRINT project. Moreover, we analyzed gene expression data of T-LGLL and benign T cells and validated the results by pyrosequencing in an extended cohort of 17 patients, including five patients with sequential samples. RESULTS: We identified dysregulation of DNA methylation associated with altered gene expression in T-LGLL. Since T-LGLL is a rare disease, the samples size is low. But as confirmed for each sample, hypermethylation of T-LGLL cells at various CpG sites located at enhancer regions is a hallmark of this disease. The interaction of BLC11B and C14orf64 as suggested by in silico data analysis could provide a novel pathogenetic mechanism that needs further experimental investigation. CONCLUSIONS: DNA methylation is altered in T-LGLL cells compared to benign T cells. In particular, BCL11B is highly significant differentially methylated in T-LGLL cells. Although our results have to be validated in a larger patient cohort, BCL11B could be considered as a potential biomarker for this leukemia. In addition, altered gene expression and hypermethylation of enhancer regions could serve as potential mechanisms for treatment of this disease. Gene interactions of dysregulated genes, like BLC11B and C14orf64, may play an important role in pathogenic mechanisms and should be further analyzed.


Asunto(s)
Leucemia Linfocítica Granular Grande , Humanos , Leucemia Linfocítica Granular Grande/genética , Leucemia Linfocítica Granular Grande/metabolismo , Leucemia Linfocítica Granular Grande/patología , Epigenoma , Metilación de ADN , Factores de Transcripción/genética , Biomarcadores/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Represoras/genética
18.
Front Immunol ; 13: 1029423, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275728

RESUMEN

Gain-of-function variants in the stimulator of interferon response cGAMP interactor 1 (STING1) gene cause STING-Associated Vasculopathy with onset in Infancy (SAVI). Previously, only heterozygous and mostly de novo STING1 variants have been reported to cause SAVI. Interestingly, one variant that only leads to SAVI when homozygous, namely c.841C>T p.(Arg281Trp), has recently been described. However, there are no entries in public databases regarding an autosomal recessive pattern of inheritance. Here, we report four additional unrelated SAVI patients carrying c.841C>T in homozygous state. All patients had interstitial lung disease and displayed typical interferon activation patterns. Only one child displayed cutaneous vasculitis, while three other patients presented with a relatively mild SAVI phenotype. Steroid and baricitinib treatment had a mitigating effect on the disease phenotype in two cases, but failed to halt disease progression. Heterozygous c.841C>T carriers in our analysis were healthy and showed normal interferon activation. Literature review identified eight additional cases with autosomal recessive SAVI caused by c.841C>T homozygosity. In summary, we present four novel and eight historic cases of autosomal recessive SAVI. We provide comprehensive clinical data and show treatment regimens and clinical responses. To date, SAVI has been listed as an exclusively autosomal dominant inherited trait in relevant databases. With this report, we aim to raise awareness for autosomal recessive inheritance in this rare, severe disease which may aid in early diagnosis and development of optimized treatment strategies.


Asunto(s)
Enfermedades Cutáneas Vasculares , Enfermedades Vasculares , Humanos , Proteínas de la Membrana/genética , Mutación , Enfermedades Vasculares/genética , Interferones/genética
20.
Front Oncol ; 12: 888114, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35875134

RESUMEN

Patients with myeloid neoplasia are classified by the WHO classification systems. Besides clinical and hematological criteria, cytogenetic and molecular genetic alterations highly impact treatment stratification. In routine diagnostics, a combination of methods is used to decipher different types of genetic variants. Eight patients were comprehensively analyzed using karyotyping, fluorescence in situ hybridization, array-CGH and a custom NGS panel. Clonal evolution was reconstructed manually, integrating all mutational information on single nucleotide variants (SNVs), insertions and deletions (indels), structural variants and copy number variants (CNVs). To allow a correct integration, we differentiate between three scenarios: 1) CNV occurring prior to the SNV/indel, but in the same cells. 2) SNV/indel occurring prior to the CNV, but in the same cells. 3) SNV/indel and CNV existing in parallel, independent of each other. Applying this bioinformatics approach, we reconstructed clonal evolution for all patients. This generalizable approach offers the possibility to integrate various data to analyze identification of driver and passenger mutations as well as possible targets for personalized medicine approaches. Furthermore, this model can be used to identify markers to assess the minimal residual disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA