Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Toxicol Chem ; 42(9): 1915-1936, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37036219

RESUMEN

Ecosystems are strongly influenced by multiple anthropogenic stressors, including a wide range of chemicals and their mixtures. Studies on the effects of multiple stressors have largely focussed on nonchemical stressors, whereas studies on chemical mixtures have largely ignored other stressors. However, both research areas face similar challenges and require similar tools and methods to predict the joint effects of chemicals or nonchemical stressors, and frameworks to integrate multiple chemical and nonchemical stressors are missing. We provide an overview of the research paradigms, tools, and methods commonly used in multiple stressor and chemical mixture research and discuss potential domains of cross-fertilization and joint challenges. First, we compare the general paradigms of ecotoxicology and (applied) ecology to explain the historical divide. Subsequently, we compare methods and approaches for the identification of interactions, stressor characterization, and designing experiments. We suggest that both multiple stressor and chemical mixture research are too focused on interactions and would benefit from integration regarding null model selection. Stressor characterization is typically more costly for chemical mixtures. While for chemical mixtures comprehensive classification systems at suborganismal level have been developed, recent classification systems for multiple stressors account for environmental context. Both research areas suffer from rather simplified experimental designs that focus on only a limited number of stressors, chemicals, and treatments. We discuss concepts that can guide more realistic designs capturing spatiotemporal stressor dynamics. We suggest that process-based and data-driven models are particularly promising to tackle the challenge of prediction of effects of chemical mixtures and nonchemical stressors on (meta-)communities and (meta-)food webs. We propose a framework to integrate the assessment of effects for multiple stressors and chemical mixtures. Environ Toxicol Chem 2023;42:1915-1936. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Ecosistema , Ecotoxicología , Medición de Riesgo/métodos , Ecotoxicología/métodos , Cadena Alimentaria , Proyectos de Investigación
3.
Sci Total Environ ; 871: 162105, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36758694

RESUMEN

Following agricultural application, pesticides can enter streams through runoff during rain events. However, little information is available on the temporal dynamics of pesticide toxicity during the main application period. We investigated pesticide application and large scale in-stream monitoring data from 101 agricultural catchments obtained from a Germany-wide monitoring from April to July in 2018 and 2019. We analysed temporal patterns of pesticide application, in-stream toxicity and exceedances of regulatory acceptable concentrations (RAC) for over 70 pesticides. On a monthly scale from April to July, toxicity to invertebrates and algae/aquatic plants (algae) obtained with event-driven samples (EDS) was highest in May/June. The peak of toxicity towards invertebrates and algae coincided with the peaks of insecticide and herbicide application. Future monitoring, i.e. related to the Water Framework Directive, could be limited to time periods of highest pesticide applications on a seasonal scale. On a daily scale, toxicity to invertebrates from EDS exceeded those of grab samples collected within one day after rainfall by a factor of 3.7. Within two to three days, toxicity in grab samples declined compared to EDS by a factor of ten for invertebrates, and a factor of 1.6 for algae. Thus, toxicity to invertebrates declined rapidly within 1 day after a rainfall event, whereas toxicity to algae remained elevated for up to 4 days. For six pesticides, RAC exceedances could only be detected in EDS. The exceedances of RACs coincided with the peaks in pesticide application. Based on EDS, we estimated that pesticide exposure would need a 37-fold reduction of all analysed pesticides, to meet the German environmental target to keep RAC exceedances below 1 % of EDS. Overall, our study shows a high temporal variability of exposure on a monthly but also daily scale to individual pesticides that can be linked to their period of application and related rain events.


Asunto(s)
Plaguicidas , Contaminantes Químicos del Agua , Animales , Plaguicidas/toxicidad , Plaguicidas/análisis , Ríos , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Agricultura , Invertebrados , Monitoreo del Ambiente
4.
Environ Toxicol Chem ; 42(9): 2007-2018, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36718721

RESUMEN

The decomposition of allochthonous organic matter, such as leaves, is a crucial ecosystem process in low-order streams. Microbial communities, including fungi and bacteria, colonize allochthonous organic material, break up large molecules, and increase the nutritional value for macroinvertebrates. Environmental variables are known to affect microbial as well as macroinvertebrate communities and alter their ability to decompose organic matter. Studying the relationship between environmental variables and decomposition has mainly been realized using leaves, with the drawbacks of differing substrate composition and consequently between-study variability. To overcome these drawbacks, artificial substrates have been developed, serving as standardizable surrogates. In the present study, we compared microbial and total decomposition of leaves with the standardized substrates of decotabs and, only for microbial decomposition, of cotton strips, across 70 stream sites in a Germany-wide study. Furthermore, we identified the most influential environmental variables for the decomposition of each substrate from a range of 26 variables, including pesticide toxicity, concentrations of nutrients, and trace elements, using stability selection. The microbial as well as total decomposition of the standardized substrates (i.e., cotton strips and decotabs) were weak or not associated with that of the natural substrate (i.e., leaves, r² < 0.01 to r² = 0.04). The decomposition of the two standardized substrates, however, showed a moderate association (r² = 0.21), which is probably driven by their similar composition, with both being made of cellulose. Different environmental variables were identified as the most influential for each of the substrates and the directions of these relationships contrasted between the substrates. Our results imply that these standardized substrates are unsuitable surrogates when investigating the decomposition of allochthonous organic matter in streams. Environ Toxicol Chem 2023;42:2007-2018. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Bacterias , Ecosistema , Hongos , Hojas de la Planta , Alemania
5.
Glob Chang Biol ; 29(1): 21-40, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36131639

RESUMEN

The increasing production, use and emission of synthetic chemicals into the environment represents a major driver of global change. The large number of synthetic chemicals, limited knowledge on exposure patterns and effects in organisms and their interaction with other global change drivers hamper the prediction of effects in ecosystems. However, recent advances in biomolecular and computational methods are promising to improve our capacity for prediction. We delineate three idealised perspectives for the prediction of chemical effects: the suborganismal, organismal and ecological perspective, which are currently largely separated. Each of the outlined perspectives includes essential and complementary theories and tools for prediction but captures only part of the phenomenon of chemical effects. Links between the perspectives may foster predictive modelling of chemical effects in ecosystems and extrapolation between species. A major challenge for the linkage is the lack of data sets simultaneously covering different levels of biological organisation (here referred to as biological levels) as well as varying temporal and spatial scales. Synthesising the three perspectives, some central aspects and associated types of data seem particularly necessary to improve prediction. First, suborganism- and organism-level responses to chemicals need to be recorded and tested for relationships with chemical groups and organism traits. Second, metrics that are measurable at many biological levels, such as energy, need to be scrutinised for their potential to integrate across levels. Third, experimental data on the simultaneous response over multiple biological levels and spatiotemporal scales are required. These could be collected in nested and interconnected micro- and mesocosm experiments. Lastly, prioritisation of processes involved in the prediction framework needs to find a balance between simplification and capturing the essential complexity of a system. For example, in some cases, eco-evolutionary dynamics and interactions may need stronger consideration. Prediction needs to move from a static to a real-world eco-evolutionary view.


Asunto(s)
Ecosistema
6.
Sci Total Environ ; 836: 155688, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-35525352

RESUMEN

In the last decades, several studies have shown that pesticides frequently occur above water quality thresholds in small streams draining arable land and are associated with changes in invertebrate communities. However, we know little about the potential propagation of pesticide effects from agricultural stream sections to least impacted stream sections that can serve as refuge areas. We sampled invertebrates and pesticides along six small streams in south-west Germany. In each stream, the sampling was conducted at an agricultural site, at an upstream forest site (later considered as "refuge"), and at a transition zone between forest and agriculture (later considered as "edge"). Pesticide exposure was higher and the proportion of pesticide-sensitive species (SPEARpesticides) was lower in agricultural sites compared to edge and refuge sites. Notwithstanding, at some edge and refuge sites, which were considered as being least impacted, we estimated unexpected pesticide toxicity (sum toxic units) exceeding thresholds at which field studies suggested adverse effects on freshwater invertebrates. We conclude that organisms in forest sections within a few kilometres upstream of agricultural areas can be exposed to ecologically relevant pesticide levels. In addition, although not statistically significant, the abundance of pesticide-sensitive taxa was slightly lower in edge compared to refuge sites, indicating a potential influence of adjacent agriculture. Future studies should further investigate the influence of spatial relationships, such as the distance between refuge and agriculture, for the propagation of pesticide effects and focus on the underlying mechanisms.


Asunto(s)
Plaguicidas , Contaminantes Químicos del Agua , Agricultura , Animales , Monitoreo del Ambiente , Invertebrados , Plaguicidas/análisis , Plaguicidas/toxicidad , Ríos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Calidad del Agua
7.
Water Res ; 208: 117848, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34781190

RESUMEN

The Water Framework Directive (WFD) demands that good status is to be achieved for all European water bodies. While governmental monitoring under the WFD mostly concludes a good status with regard to pesticide pollution, numerous scientific studies have demonstrated widespread negative ecological impacts of pesticide exposure in surface waters. To identify reasons for this discrepancy, we analysed pesticide concentrations measured in a monitoring campaign of 91 agricultural streams in 2018 and 2019 using methodologies that exceed the requirements of the WFD. This included a sampling strategy that takes into account the periodic occurrence of pesticides and a different analyte spectrum designed to reflect current pesticide use. We found that regulatory acceptable concentrations (RACs) were exceeded for 39 different pesticides at 81% of monitoring sites. In comparison, WFD-compliant monitoring of the same sites would have detected only eleven pesticides as exceeding the WFD-based environmental quality standards (EQS) at 35% of monitoring sites. We suggest three reasons for this underestimation of pesticide risk under the WFD-compliant monitoring: (1) The sampling approach - the timing and site selection are unable to adequately capture the periodic occurrence of pesticides and investigate surface waters particularly susceptible to pesticide risks; (2) the measuring method - a too narrow analyte spectrum (6% of pesticides currently approved in Germany) and insufficient analytical capacities result in risk drivers being overlooked; (3) the assessment method for measured concentrations - the protectivity and availability of regulatory thresholds are not sufficient to ensure a good ecological status. We therefore propose practical and legal refinements to improve the WFD's monitoring and assessment strategy in order to gain a more realistic picture of pesticide surface water pollution. This will enable more rapid identification of risk drivers and suitable risk management measures to ultimately improve the status of European surface waters.


Asunto(s)
Plaguicidas , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Plaguicidas/análisis , Agua , Contaminantes Químicos del Agua/análisis , Calidad del Agua
8.
Water Res ; 203: 117535, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34403843

RESUMEN

Few studies have examined the exposure of small streams (< 30 km2 catchment size) to agriculturally used pesticides, compared to large rivers. A total of 105 sites in 103 small agricultural streams were investigated for 76 pesticides (insecticides, herbicides, fungicides) and 32 pesticide metabolites in spring and summer over two years (2018 and 2019) during dry weather and rainfall using event-driven sampling. The median total concentration of the 76 pesticides was 0.18 µg/L, with 9 pesticides per sample on average (n = 815). This is significantly higher than monitoring data for larger streams, reflecting the close proximity to agricultural fields and the limited dilution by non-agricultural waters. The frequency of detection of all pesticides correlated with sales quantity and half-lives in water. Terbuthylazine, MCPA, boscalid, and tebuconazole showed the highest median concentrations. The median of the total concentration of the 32 metabolites exceeded the pesticide concentration by more than an order of magnitude. During dry weather, the median total concentration of the 76 pesticides was 0.07 µg/L, with 5 pesticides per sample on average. Rainfall events increased the median total pesticide concentration by a factor of 10 (to 0.7 µg/L), and the average number of pesticides per sample to 14 (with up to 41 in single samples). The concentration increase was particularly strong for 2,4-D, MCPA, terbuthylazine, and nicosulfuron (75 percentile). Metabolite concentrations were generally less responsive to rainfall, except for those of terbuthylazine, flufenacet, metamitron, and prothioconazole. The frequent and widespread exceedance of the regulatory acceptable concentrations (RAC) of the 76 pesticides during both, dry weather and rainfall, suggests that current plant protection product authorization and risk mitigation methods are not sufficient to protect small streams.


Asunto(s)
Plaguicidas , Contaminantes Químicos del Agua , Agricultura , Monitoreo del Ambiente , Plaguicidas/análisis , Ríos , Contaminantes Químicos del Agua/análisis , Tiempo (Meteorología)
9.
Water Res ; 201: 117262, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34118650

RESUMEN

Despite elaborate regulation of agricultural pesticides, their occurrence in non-target areas has been linked to adverse ecological effects on insects in several field investigations. Their quantitative role in contributing to the biodiversity crisis is, however, still not known. In a large-scale study across 101 sites of small lowland streams in Central Europe, Germany we revealed that 83% of agricultural streams did not meet the pesticide-related ecological targets. For the first time we identified that agricultural nonpoint-source pesticide pollution was the major driver in reducing vulnerable insect populations in aquatic invertebrate communities, exceeding the relevance of other anthropogenic stressors such as poor hydro-morphological structure and nutrients. We identified that the current authorisation of pesticides, which aims to prevent unacceptable adverse effects, underestimates the actual ecological risk as (i) measured pesticide concentrations exceeded current regulatory acceptable concentrations in 81% of the agricultural streams investigated, (ii) for several pesticides the inertia of the authorisation process impedes the incorporation of new scientific knowledge and (iii) existing thresholds of invertebrate toxicity drivers are not protective by a factor of 5.3 to 40. To provide adequate environmental quality objectives, the authorisation process needs to include monitoring-derived information on pesticide effects at the ecosystem level. Here, we derive such thresholds that ensure a protection of the invertebrate stream community.


Asunto(s)
Plaguicidas , Contaminantes Químicos del Agua , Agricultura , Animales , Ecosistema , Monitoreo del Ambiente , Europa (Continente) , Alemania , Insectos , Invertebrados , Plaguicidas/análisis , Ríos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
10.
Toxics ; 9(4)2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33917877

RESUMEN

This study assessed the acute and chronic risk of pesticides, singly and as mixtures, for fish using comprehensive chemical data of four monitoring studies conducted in small- and medium-sized streams of Switzerland between 2012 and 2018. Pesticides were ranked based on single substance risk quotients and relative contribution to mixture risk. Concentrations of the pyrethroid insecticides, λ-cyhalothrin, cypermethrin and deltamethrin, and the fungicides, carbendazim and fenpropimorph, posed acute or chronic single substance risks. Risk quotients of eighteen additional pesticides were equal or greater than 0.1, and thirteen of those contributed ≥30% to mixture risk. Relatively few substances dominated the mixture risk in most water samples, with chronic and acute maximum cumulative ratios never exceeding 5 and 7, respectively. A literature review of toxicity data showed that concentrations of several pesticides detected in Swiss streams were sufficient to cause direct sublethal effects on fish in laboratory studies. Based on the results of our study, we conclude that pesticides detected in Swiss streams, especially pyrethroid insecticides, fungicides and pesticide mixtures, pose a risk to fish health and can cause direct sublethal effects at environmental concentrations. Sensitive life stages of species with highly specialized life history traits may be particularly vulnerable; however, the lack of toxicity data for non-model species currently prevents a conclusive assessment across species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA