Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-21467135

RESUMEN

The dynamic compartmental organization of the transcriptional machinery in mammalian nuclei places particular constraints on the spatial organization of the genome. The clustering of active RNA polymerase I transcription units from several chromosomes at nucleoli is probably the best-characterized and universally accepted example. RNA polymerase II localization in mammalian nuclei occurs in distinct concentrated foci that are several-fold fewer in number compared to the number of active genes and transcription units. Individual transcribed genes cluster at these shared transcription factories in a nonrandom manner, preferentially associating with heterologous, coregulated genes. We suggest that the three-dimensional (3D) conformation and relative arrangement of chromosomes in the nucleus has a major role in delivering tissue-specific gene-expression programs.


Asunto(s)
Núcleo Celular/genética , Genoma/genética , Transcripción Genética , Animales , Células Eritroides/metabolismo , Genes , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , ARN no Traducido/metabolismo
3.
Mol Cell Biol ; 21(15): 5156-68, 2001 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-11438670

RESUMEN

Two alleles of the Drosophila melanogaster Rfc4 (DmRfc4) gene, which encodes subunit 4 of the replication factor C (RFC) complex, cause striking defects in mitotic chromosome cohesion and condensation. These mutations produce larval phenotypes consistent with a role in DNA replication but also result in mitotic chromosomal defects appearing either as premature chromosome condensation-like or precocious sister chromatid separation figures. Though the DmRFC4 protein localizes to all replicating nuclei, it is dispersed from chromatin in mitosis. Thus the mitotic defects appear not to be the result of a direct role for RFC4 in chromosome structure. We also show that the mitotic defects in these two DmRfc4 alleles are the result of aberrant checkpoint control in response to DNA replication inhibition or damage to chromosomes. Not all surveillance function is compromised in these mutants, as the kinetochore attachment checkpoint is operative. Intriguingly, metaphase delay is frequently observed with the more severe of the two alleles, indicating that subsequent chromosome segregation may be inhibited. This is the first demonstration that subunit 4 of RFC functions in checkpoint control in any organism, and our findings additionally emphasize the conserved nature of RFC's involvement in checkpoint control in multicellular eukaryotes.


Asunto(s)
Proteínas de Unión al ADN/genética , Mutación , Alelos , Secuencia de Aminoácidos , Animales , Bromodesoxiuridina/metabolismo , Ciclo Celular , Núcleo Celular/metabolismo , Células Cultivadas , Aberraciones Cromosómicas , Trastornos de los Cromosomas , Cromosomas/metabolismo , Cromosomas/ultraestructura , Clonación Molecular , ADN/metabolismo , Drosophila/metabolismo , Indoles/metabolismo , Larva/metabolismo , Microscopía Fluorescente , Mitosis , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena de la Polimerasa , Proteína de Replicación C , Glándulas Salivales/metabolismo , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA