RESUMEN
The magneto-Rayleigh-Taylor instability (MRTI) plays an essential role in astrophysical systems and in magneto-inertial fusion, where it is known to be an important degradation mechanism of confinement and target performance. In this Letter, we show for the first time experimental evidence of mode mixing and the onset of an inverse-cascade process resulting from the nonlinear coupling of two discrete preseeded axial modes (400- and 550-µm wavelengths) on an Al liner that is magnetically imploded using the 20-MA, 100-ns rise-time Z Machine at Sandia National Laboratories. Four radiographs captured the temporal evolution of the MRTI. We introduce a novel unfold technique to analyze the experimental radiographs and compare the results to simulations and to a weakly nonlinear model. We find good quantitative agreement with simulations using the radiation magnetohydrodynamics code hydra. Spectral analysis of the MRTI time evolution obtained from the simulations shows evidence of harmonic generation, mode coupling, and the onset of an inverse-cascade process. The experiments provide a benchmark for future work on the MRTI and motivate the development of new analytical theories to better understand this instability.
RESUMEN
Enhanced implosion stability has been experimentally demonstrated for magnetically accelerated liners that are coated with 70 µm of dielectric. The dielectric tamps liner-mass redistribution from electrothermal instabilities and also buffers coupling of the drive magnetic field to the magneto-Rayleigh-Taylor instability. A dielectric-coated and axially premagnetized beryllium liner was radiographed at a convergence ratio [CR=Rin,0/Rin(z,t)] of 20, which is the highest CR ever directly observed for a strengthless magnetically driven liner. The inner-wall radius Rin(z,t) displayed unprecedented uniformity, varying from 95 to 130 µm over the 4.0 mm axial height captured by the radiograph.
RESUMEN
Sandia's Z Machine uses its high current to magnetically implode targets relevant to inertial confinement fusion. Since target performance is highly dependent on the applied drive field, measuring magnetic field at the target is essential for accurate simulations. Recently, the magnetic field at the target was measured through splitting of the sodium 3s-3p doublet at 5890 and 5896 Å. Spectroscopic dopants were applied to the exterior of the target, and spectral lines were observed in absorption. Magnetic fields in excess of 200 T were measured, corresponding to drive currents of approximately 5 MA early in the pulse.
RESUMEN
Novel experimental data are reported that reveal helical instability formation on imploding z-pinch liners that are premagnetized with an axial field. Such instabilities differ dramatically from the mostly azimuthally symmetric instabilities that form on unmagnetized liners. The helical structure persists at nearly constant pitch as the liner implodes. This is surprising since, at the liner surface, the azimuthal drive field presumably dwarfs the axial field for all but the earliest stages of the experiment. These fundamentally 3D results provide a unique and challenging test for 3D-magnetohydrodynamics simulations.
RESUMEN
The Z-pinch dynamic hohlraum is an x-ray source for high energy-density physics studies that is heated by a radiating shock to radiation temperatures >200 eV. The time-dependent 300-400 eV electron temperature and 15-35 mg/cc density of this shock have been measured for the first time using space-resolved Si tracer spectroscopy. The shock x-ray emission is inferred from these measurements to exceed 50 TW, delivering >180 kJ to the hohlraum.
RESUMEN
Nested wire-array pinches are shown to generate soft x-ray radiation pulse shapes required for three-shock isentropic compression and hot-spot ignition of high-yield inertial confinement fusion capsules. We demonstrate a reproducible and tunable foot pulse (first shock) produced by interaction of the outer and inner arrays. A first-step pulse (second shock) is produced by inner array collision with a central CH2 foam target. Stagnation of the inner array at the axis produces the third shock. Capsules optimized for several of these shapes produce 290-900 MJ fusion yields in 1D simulations.
RESUMEN
Hot dense capsule implosions driven by Z-pinch x rays have been measured using a approximately 220 eV dynamic Hohlraum to implode 1.7-2.1 mm diameter gas-filled CH capsules. The capsules absorbed up to approximately 20 kJ of x rays. Argon tracer atom spectra were used to measure the T(e) approximately 1 keV electron temperature and the n(e) approximately 1-4 x 10(23) cm(-3) electron density. Spectra from multiple directions provide core symmetry estimates. Computer simulations agree well with the peak emission values of T(e), n(e), and symmetry, indicating reasonable understanding of the Hohlraum and implosion physics.
RESUMEN
The radiation and shock generated by impact of an annular tungsten Z-pinch plasma on a 10-mm diam 5-mg/cc CH(2) foam are diagnosed with x-ray imaging and power measurements. The radiative shock was virtually unaffected by Z-pinch plasma instabilities. The 5-ns-duration approximately 135-eV radiation field imploded a 2.1-mm-diam CH capsule. The measured radiation temperature, shock radius, and capsule radius agreed well with computer simulations, indicating understanding of the main features of a Z-pinch dynamic-hohlraum-driven capsule implosion.