Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
FEMS Microbiol Lett ; 366(1)2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30534987

RESUMEN

A global census of marine microbial life has been underway over the past several decades. During this period, there have been scientific breakthroughs in estimating microbial diversity and understanding microbial functioning and ecology. It is estimated that the ocean, covering 71% of the earth's surface with its estimated volume of about 2 × 1018 m3 and an average depth of 3800 m, hosts the largest population of microbes on Earth. More than 2 million eukaryotic and prokaryotic species are thought to thrive both in the ocean and on its surface. Prokaryotic cell abundances can reach densities of up to 1012 cells per millilitre, exceeding eukaryotic densities of around 106 cells per millilitre of seawater. Besides their large numbers and abundance, marine microbial assemblages and their organic catalysts (enzymes) have a largely underestimated value for their use in the development of industrial products and processes. In this perspective article, we identified critical gaps in knowledge and technology to fast-track this development. We provided a general overview of the presumptive microbial assemblages in oceans, and an estimation of what is known and the enzymes that have been currently retrieved. We also discussed recent advances made in this area by the collaborative European Horizon 2020 project 'INMARE'.


Asunto(s)
Organismos Acuáticos/enzimología , Océanos y Mares , Microbiología del Agua , Bacterias/enzimología , Biodiversidad
2.
Metab Eng ; 13(5): 555-69, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21741494

RESUMEN

Sterols are major lipids in eukaryotes and differ in their specific structure between species. Both cholesterol and ergosterol can form liquid ordered domains in artificial membranes. We reasoned that substituting the main sterol ergosterol by cholesterol in yeast should permit domain formation and discriminate between physical and sterol structure-dependent functions. Using a cholesterol-producing yeast strain, we show that solute transporters for tryptophan and arginine are functional, whereas the export of weak organic acids via Pdr12p, a multi-drug resistance family member, is not. The latter reveals a sterol function that is probably dependent upon a precise sterol structure. We present a series of novel yeast strains with different sterol compositions as valuable tools to characterize sterol function and use them to refine the sterol requirements for Pdr12p. These strains will also be improved hosts for heterologous expression of sterol-dependent proteins and safe sources to obtain pure cholesterol and other sterols.


Asunto(s)
Colesterol/biosíntesis , Colesterol/genética , Ergosterol , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Triptófano/genética , Triptófano/metabolismo
3.
Traffic ; 10(2): 186-200, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19054390

RESUMEN

Previous biochemical work has revealed two parallel routes of exit from the endoplasmic reticulum (ER) in the yeast Saccharomyces cerevisiae, one seemingly specific for glycosyl-phosphatidylinositol (GPI)-anchored proteins. Using the coat protein II (COPII) mutant sec31-1, we visualized ER exit sites (ERES) and identified three distinct ERES populations in vivo. One contains glycosylated pro-alpha-factor, the second contains the GPI-anchored proteins Cwp2p, Ccw14p and Tos6p and the third is enriched with the hexose transporter, Hxt1p. Concentration of GPI-anchored proteins prior to budding requires anchor remodeling, and Hxt1p incorporation into ERES requires the COPII components Sec12p and Sec16p. Additionally, we have found that GPI-anchored protein ER exit is controlled by the p24 family member Emp24p, whereas ER export of most transmembrane proteins requires the Cornichon homologue Erv14p.


Asunto(s)
Pared Celular/metabolismo , Retículo Endoplásmico/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Pared Celular/genética , Vesículas Citoplasmáticas/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa , Glicoproteínas de Membrana/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Temperatura , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
4.
J Chromatogr B Analyt Technol Biomed Life Sci ; 786(1-2): 45-59, 2003 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-12651001

RESUMEN

The gene products Ycf3 (hypothetical chloroplast open reading frame) and BtpA (biogenesis of thylakoid protein) are thought to be involved in the biogenesis of the membrane protein complex photosystem I (PSI) from Synechocystis PCC 6803. PSI consists of 12 different subunits and binds more than 100 cofactors, making it a model protein to study different aspects of membrane protein biogenesis. For a detailed biophysical characterization of Ycf3 and BtpA pure proteins must be available in sufficient quantities. Therefore we cloned the corresponding genes into expression vectors. To facilitate purification we created His-tagged versions of Ycf3 and BtpA in addition to the unmodified forms. Immobilized metal affinity chromatography (IMAC) yielded His-tagged proteins which were used for the production of antibodies. Purification strategies for non-tagged proteins could also be established: Ycf3 could be purified in soluble form using a two-step purification in which ammonium sulfate precipitation was combined with anion-exchange chromatography (IEC). BtpA had to be purified from inclusion bodies by two-consecutive IEC steps under denaturing conditions. An optimized refolding protocol was established that yielded pure BtpA. In all cases, MALDI-TOF peptide mass fingerprinting (PMF) was used to confirm protein identity. Initially, size exclusion chromatography and CD-spectroscopy were used for biophysical characterization of the proteins. Both Ycf3 and BtpA show homo-oligomerization in vitro. In summary, purification protocols for Ycf3 and BtpA have been designed that yield pure proteins which can be used to probe the molecular function of these proteins for membrane protein biogenesis.


Asunto(s)
Proteínas Bacterianas , Cianobacterias/química , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/aislamiento & purificación , Complejo de Proteína del Fotosistema I/aislamiento & purificación , Secuencia de Bases , Cromatografía Liquida/métodos , Dicroismo Circular , Cartilla de ADN , Electroforesis en Gel de Poliacrilamida , Proteínas Recombinantes/aislamiento & purificación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
5.
Biochim Biophys Acta ; 1556(2-3): 265-72, 2002 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-12460685

RESUMEN

The cyanobacterium Synechococcus PCC 7942 grown under iron starvation assembles a supercomplex consisting of a trimeric Photosystem I (PSI) complex encircled by a ring of 18 CP43' or IsiA light-harvesting complexes [Nature 412 (2001) 745]. Here we present a spectroscopic characterization by temperature-dependent absorption and fluorescence spectroscopy, site-selective fluorescence spectroscopy at 5 K, and circular dichroism of isolated PSI-IsiA, PSI and IsiA complexes from this cyanobacterium grown under iron starvation. The results suggest that the IsiA ring increases the absorption cross-section of PSI by about 100%. Each IsiA subunit binds about 16-17 chlorophyll a (Chl a) molecules and serves as an efficient antenna for PSI. Each of the monomers of the trimeric PSI complex contains two red chlorophylls, which presumably give rise to one exciton-coupled dimer and at 5 K absorb and fluoresce at 703 and 713 nm, respectively. The spectral properties of these C-703 chlorophylls are not affected by the presence of the IsiA antenna ring. The spectroscopic properties of the purified IsiA complexes are similar to those of the related CP43 complex from plants, except that the characteristic narrow absorption band of CP43 at 682.5 nm is missing in IsiA.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Portadoras/química , Cianobacterias/química , Complejos de Proteína Captadores de Luz , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Dicroismo Circular , Cianobacterias/metabolismo , Sustancias Macromoleculares , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Complejo de Proteína del Fotosistema I , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA