Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nucleic Acids Res ; 52(12): 6945-6963, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38783095

RESUMEN

Cellular senescence, a major driver of aging, can be stimulated by DNA damage, and is counteracted by the DNA repair machinery. Here we show that in p16INK4a-deficient cells, senescence induction by the environmental genotoxin B[a]P or ionizing radiation (IR) completely depends on p21CIP1. Immunoprecipitation-based mass spectrometry interactomics data revealed that during senescence induction and maintenance, p21CIP1 specifically inhibits CDK4 and thereby activates the DREAM complex. Genome-wide transcriptomics revealed striking similarities in the response induced by B[a]P and IR. Among the top 100 repressed genes 78 were identical between B[a]P and IR and 76 were DREAM targets. The DREAM complex transcriptionally silences the main proliferation-associated transcription factors E2F1, FOXM1 and B-Myb as well as multiple DNA repair factors. Knockdown of p21CIP1, E2F4 or E2F5 diminished both, repression of these factors and senescence. The transcriptional profiles evoked by B[a]P and IR largely overlapped with the profile induced by pharmacological CDK4 inhibition, further illustrating the role of CDK4 inhibition in genotoxic stress-induced senescence. Moreover, data obtained by live-cell time-lapse microscopy suggest the inhibition of CDK4 by p21CIP1 is especially important for arresting cells which slip through mitosis. Overall, we identified the p21CIP1/CDK4/DREAM axis as a master regulator of genotoxic stress-induced senescence.


Asunto(s)
Senescencia Celular , Quinasa 4 Dependiente de la Ciclina , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Daño del ADN , Proteínas de Interacción con los Canales Kv , Senescencia Celular/efectos de la radiación , Senescencia Celular/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 4 Dependiente de la Ciclina/genética , Humanos , Proteínas de Interacción con los Canales Kv/metabolismo , Proteínas de Interacción con los Canales Kv/genética , Radiación Ionizante , Reparación del ADN , Regulación de la Expresión Génica/efectos de la radiación , Proteínas Represoras
2.
Cancers (Basel) ; 14(9)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35565362

RESUMEN

First-line drug in the treatment of glioblastoma, the most severe brain cancer, is temozolomide (TMZ), a DNA-methylating agent that induces the critical damage O6-methylguanine (O6MeG). This lesion is cytotoxic through the generation of mismatch repair-mediated DNA double-strand breaks (DSBs), which trigger apoptotic pathways. Previously, we showed that O6MeG also induces cellular senescence (CSEN). Here, we show that TMZ-induced CSEN is a late response which has similar kinetics to apoptosis, but at a fourfold higher level. CSEN cells show a high amount of DSBs, which are located outside of telomeres, a high level of ROS and oxidized DNA damage (8-oxo-guanine), and sustained activation of the DNA damage response and histone methylation. Despite the presence of DSBs, CSEN cells are capable of repairing radiation-induced DSBs. Glioblastoma cells that acquired resistance to TMZ became simultaneously resistant to TMZ-induced CSEN. Using a Tet-On glioblastoma cell system, we show that upregulation of MGMT immediately after TMZ completely abrogated apoptosis and CSEN, while induction of MGMT long-term (>72 h) after TMZ did not reduce apoptosis and CSEN. Furthermore, upregulation of MGMT in the senescent cell population had no impact on the survival of senescent cells, indicating that O6MeG is required for induction, but not for maintenance of the senescent state. We further show that, in recurrent GBM specimens, a significantly higher level of DSBs and CSEN-associated histone H3K27me3 was observed than in the corresponding primary tumors. Overall, the data indicate that CSEN is a key node induced in GBM following chemotherapy.

3.
Nutrients ; 13(7)2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34371895

RESUMEN

BACKGROUND: Curcumin, a natural polyphenol and the principal bioactive compound in Curcuma longa, was reported to have anti-inflammatory, anti-cancer, anti-diabetic and anti-rheumatic activity. Curcumin is not only considered for preventive, but also for therapeutic, purposes in cancer therapy, which requires a killing effect on cancer cells. A drawback, however, is the low bioavailability of curcumin due to its insolubility in water. To circumvent this limitation, curcumin was administered in different water-soluble formulations, including liposomes or embedded into nanoscaled micelles. The high uptake rate of micellar curcumin makes it attractive also for cancer therapeutic strategies. Native curcumin solubilised in organic solvent was previously shown to be cytotoxic and bears a genotoxic potential. Corresponding studies with micellar curcumin are lacking. METHODS: We compared the cytotoxic and genotoxic activity of native curcumin solubilised in ethanol (Cur-E) with curcumin embedded in micells (Cur-M). We measured cell death by MTT assays, apoptosis, necrosis by flow cytometry, senolysis by MTT and C12FDG and genotoxicity by FPG-alkaline and neutral singe-cell gel electrophoresis (comet assay). RESULTS: Using a variety of primary and established cell lines, we show that Cur-E and Cur-M reduce the viability in all cell types in the same dose range. Cur-E and Cur-M induced dose-dependently apoptosis, but did not exhibit senolytic activity. In the cytotoxic dose range, Cur-E and Cur-M were positive in the alkaline and the neutral comet assay. Genotoxic effects vanished upon removal of curcumin, indicating efficient and complete repair of DNA damage. For inducing cell death, which was measured 48 h after the onset of treatment, permanent exposure was required while 60 min pulse-treatment was ineffective. In all assays, Cur-E and Cur-M were equally active, and the concentration above which significant cytotoxic and genotoxic effects were observed was 10 µM. Micelles not containing curcumin were completely inactive. CONCLUSIONS: The data show that micellar curcumin has the same cytotoxicity and genotoxicity profile as native curcumin. The effective concentration on different cell lines, including primary cells, was far above the curcumin concentration that can be achieved systemically in vivo, which leads us to conclude that native curcumin and curcumin administered as food supplement in a micellar formulation at the ADI level are not cytotoxic/genotoxic, indicating a wide margin of safety.


Asunto(s)
Apoptosis/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Curcumina/toxicidad , Daño del ADN , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ensayo Cometa , Curcumina/química , Relación Dosis-Respuesta a Droga , Composición de Medicamentos , Etanol/química , Humanos , Liposomas , Micelas , Necrosis , Medición de Riesgo , Solubilidad , Solventes/química
4.
Cancers (Basel) ; 13(14)2021 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-34298797

RESUMEN

Therapy of malignant glioma depends on the induction of O6-methylguanine by the methylating agent temozolomide (TMZ). However, following TMZ exposure, most glioma cells evade apoptosis and become senescent and are thereby protected against further anticancer therapy. This protection is thought to be dependent on the senescent cell anti-apoptotic pathway (SCAP). Here we analyzed the factors involved in the SCAP upon exposure to TMZ in glioblastoma cell lines (LN-229, A172, U87MG) and examined whether inhibition of these factors could enhance TMZ-based toxicity by targeting senescent cells. We observed that following TMZ treatment, c-IAP2 and Bcl-2 were upregulated. Inhibition of these SCAP factors using non-toxic concentrations of the small molecule inhibitors, BV6 and venetoclax, significantly increased cell death, as measured 144 h after TMZ exposure. Most importantly, BV6 and venetoclax treatment of senescent cells strongly increased cell death after an additional 120 h. Moreover, Combenefit analyses revealed a significant synergy combining BV6 and venetoclax. In contrast to BV6 and venetoclax, AT406, embelin, and TMZ itself, teniposide and the PARP inhibitor pamiparib did not increase cell death in senescent cells. Based on these data, we suggest that BV6 and venetoclax act as senolytic agents in glioblastoma cells upon TMZ exposure.

5.
Cell Mol Life Sci ; 78(14): 5587-5604, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34100981

RESUMEN

To clarify whether differential compartmentalization of Survivin impacts temozolomide (TMZ)-triggered end points, we established a well-defined glioblastoma cell model in vitro (LN229 and A172) and in vivo, distinguishing between its nuclear and cytoplasmic localization. Expression of nuclear export sequence (NES)-mutated Survivin (SurvNESmut-GFP) led to impaired colony formation upon TMZ. This was not due to enhanced cell death but rather due to increased senescence. Nuclear-trapped Survivin reduced homologous recombination (HR)-mediated double-strand break (DSB) repair, as evaluated by γH2AX foci formation and qPCR-based HR assay leading to pronounced induction of chromosome aberrations. Opposite, clones, expressing free-shuttling cytoplasmic but not nuclear-trapped Survivin, could repair TMZ-induced DSBs and evaded senescence. Mass spectrometry-based interactomics revealed, however, no direct interaction of Survivin with any of the repair factors. The improved TMZ-triggered HR activity in Surv-GFP was associated with enhanced mRNA and stabilized RAD51 protein expression, opposite to diminished RAD51 expression in SurvNESmut cells. Notably, cytoplasmic Survivin could significantly compensate for the viability under RAD51 knockdown. Differential Survivin localization also resulted in distinctive TMZ-triggered transcriptional pathways, associated with senescence and chromosome instability as shown by global transcriptome analysis. Orthotopic LN229 xenografts, expressing SurvNESmut exhibited diminished growth and increased DNA damage upon TMZ, as manifested by PCNA and γH2AX foci expression, respectively, in brain tissue sections. Consequently, those mice lived longer. Although tumors of high-grade glioma patients expressed majorly nuclear Survivin, they exhibited rarely NES mutations which did not correlate with survival. Based on our in vitro and xenograft data, Survivin nuclear trapping would facilitate glioma response to TMZ.


Asunto(s)
Núcleo Celular/metabolismo , Senescencia Celular , Resistencia a Antineoplásicos , Glioblastoma/tratamiento farmacológico , Recombinación Homóloga , Survivin/metabolismo , Temozolomida/farmacología , Animales , Antineoplásicos Alquilantes/farmacología , Apoptosis , Biomarcadores de Tumor , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Núcleo Celular/genética , Proliferación Celular , Daño del ADN , Reparación del ADN , Femenino , Regulación Neoplásica de la Expresión Génica , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Ratones , Ratones Desnudos , Survivin/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Cancers (Basel) ; 13(9)2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33922007

RESUMEN

Senescence is an important consequence of cytostatic drug-based tumor therapy. Here we analyzed to which degree the anticancer drug oxaliplatin induces cell death, cell cycle arrest, and senescence in colorectal cancer (CRC) cells and elucidated the role of p53. Oxaliplatin treatment resulted in the G2-phase arrest in all CRC lines tested (HCT116p53+/+, HCT116p53-/-, LoVo, SW48 and SW480). Immunoblot analysis showed that within the p53-competent lines p53 and p21CIP1 are activated at early times upon oxaliplatin treatment. However, at later times, only LoVo cells showed sustained activation of the p53/p21CIP1 pathway, accompanied by a strong induction of senescence as measured by senescence-associated ß-Gal staining and induction of senescence-associated secretory phenotype (SASP) factors. Opposite to LoVo, the p53/p21CIP1 response and senescence induction was much weaker in the p53-proficient SW48 and SW480 cells, which was due to deficiency for p14ARF. Thus, among lines studied only LoVo express p14ARF protein and siRNA-mediated knockdown of p14ARF significantly reduced sustained p53/p21CIP1 activation and senescence. Vice versa, ectopic p14ARF expression enhanced oxaliplatin-induced senescence in SW48 and SW480 cells. Our data show that oxaliplatin-induced senescence in CRC cells is dependent on p53 proficiency; however, a significant induction can only be observed upon p14ARF-mediated p53 stabilization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA