Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
ACS Omega ; 4(13): 15414-15420, 2019 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-31572841

RESUMEN

Over the past 30 years, there has been a dramatic rise in the number of infections caused by multidrug-resistant bacteria, which have proliferated due to the misuse and overuse of antibiotics. Over this same time period, however, there has also been a decline in the number of antibiotics with novel mechanisms of action coming to market. Therefore, there is a growing need for an increase in the speed at which new antibiotics are discovered and developed. Natural products produced by bacteria have been and continue to be a robust source of novel antibiotics; however, new and complementary methods for screening large bacterial libraries for novel antibiotic production are needed due to the current agar methods being limited in scope, time consuming, and prone to error. Herein, we describe a rapid, robust, and quantitative high-throughput liquid culture screening method for antibiotic production by bacteria. This method has the ability to screen both mono- and coculture mixtures of bacteria in vitro and be adapted to other phenotypic natural product analyses. Over 260 bacterial species were screened in monoculture, and 38 and 34% were found to produce antibiotics capable of inhibition of Staphylococcus aureus or Escherichia coli, respectively, with 8 and 4% being classified as strong producers (≥30% growth inhibition), respectively. Bacteria found to not produce antibiotics in monoculture were also screened in coculture using an adaptation of this method. Of the more than 270 cocultures screened, 14 and 30% were found to produce antibiotics capable of inhibition of S. aureus or E. coli, respectively. Of those bacteria found to produce antibiotics in monoculture, 43 bacteria were subjected to 16S rRNA sequencing and found to be majority Pseudomonas (37%), Serratia (19%), and Bacillus (14%) bacteria, but two novel producers, Herbaspirillum and Kluyvera, were also found.

2.
mSphere ; 4(1)2019 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-30700513

RESUMEN

Bacteria often live in complex communities in which they interact with other organisms. Consideration of the social environment of bacteria can reveal emergent traits and behaviors that would be overlooked by studying bacteria in isolation. Here we characterize a social trait which emerges upon interaction between the distantly related soil bacteria Pseudomonas fluorescens Pf0-1 and Pedobacter sp. strain V48. On hard agar, which is not permissive for motility of the monoculture of either species, coculture reveals an emergent phenotype that we term "interspecies social spreading," where the mixed colony spreads across the hard surface. We show that initiation of social spreading requires close association between the two species of bacteria. Both species remain associated throughout the spreading colony, with reproducible and nonhomogenous patterns of distribution. The nutritional environment influences social spreading: no social behavior is observed under high-nutrient conditions, but low-nutrient conditions are insufficient to promote social spreading without high salt concentrations. This simple two-species consortium is a tractable model system that will facilitate mechanistic investigations of interspecies interactions and provide insight into emergent properties of interacting species. These studies will contribute to the broader knowledge of how bacterial interactions influence the functions of communities they inhabit.IMPORTANCE The wealth of studies on microbial communities has revealed the complexity and dynamics of the composition of communities in many ecological settings. Fewer studies probe the functional interactions of the community members. Function of the community as a whole may not be fully revealed by characterizing the individuals. In our two-species model community, we find an emergent trait resulting from the interaction of the soil bacteria Pseudomonas fluorescens Pf0-1 and Pedobacter sp. V48. Observation of emergent traits suggests there may be many functions of a community that are not predicted based on a priori knowledge of the community members. These types of studies will provide a more holistic understanding of microbial communities, allowing us to connect information about community composition with behaviors determined by interspecific interactions. These studies increase our ability to understand communities, such as the soil microbiome, plant-root microbiome, and human gut microbiome, with the final goal of being able to manipulate and rationally improve these communities.


Asunto(s)
Locomoción , Consorcios Microbianos , Interacciones Microbianas , Pedobacter/fisiología , Pseudomonas fluorescens/fisiología , Agar , Medios de Cultivo/química , Concentración Osmolar , Sales (Química) , Microbiología del Suelo
3.
Bioorg Med Chem Lett ; 27(12): 2762-2765, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28478925

RESUMEN

Natural products are an abundant source of structurally diverse compounds with antibacterial activity that can be used to develop new and potent antibiotics. One such class of natural products is the pseudopyronines. Here we present the isolation of pseudopyronine B (2) from a Pseudomonas species found in garden soil in Western North Carolina, and SAR evaluation of C3 and C6 alkyl analogs of the natural product for antibacterial activity against Gram-positive and Gram-negative bacteria. We found a direct relationship between antibacterial activity and C3/C6 alkyl chain length. For inhibition of Gram-positive bacteria, alkyl chain lengths between 6 and 7 carbons were found to be the most active (IC50=0.04-3.8µg/mL) whereas short alkyl chain analogs showed modest activity against Gram-negative bacteria (IC50=223-304µg/mL). This demonstrates the potential for this class of natural products to be optimized for selective activity against either Gram-positive or Gram-negative bacteria.


Asunto(s)
Antibacterianos/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Pironas/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Pseudomonas/química , Pironas/química , Pironas/aislamiento & purificación , Relación Estructura-Actividad
4.
Appl Environ Microbiol ; 79(17): 5405-10, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23811507

RESUMEN

Pseudomonas species can exhibit phenotypic variation resulting from gacS or gacA mutation. P. fluorescens Pf0-1 is a gacA mutant and exhibits pleiotropic changes following the introduction of a functional allele. GacA enhances biofilm development while reducing dissemination in soil, suggesting that alternative Gac phenotypes enable Pseudomonas sp. to exploit varied environments.


Asunto(s)
Proteínas Bacterianas/genética , Pseudomonas fluorescens/genética , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Eliminación de Gen , Prueba de Complementación Genética , Pseudomonas fluorescens/fisiología , Microbiología del Suelo
5.
J Bacteriol ; 194(16): 4395-405, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22707704

RESUMEN

Recombination between insertion sequence copies can cause genetic deletion, inversion, or duplication. However, it is difficult to assess the fraction of all genomic rearrangements that involve insertion sequences. In previous gene duplication and amplification studies of Acinetobacter baylyi ADP1, an insertion sequence was evident in approximately 2% of the characterized duplication sites. Gene amplification occurs frequently in all organisms and has a significant impact on evolution, adaptation, drug resistance, cancer, and various disorders. To understand the molecular details of this important process, a previously developed system was used to analyze gene amplification in selected mutants. The current study focused on amplification events in two chromosomal regions that are near one of six copies of the only transposable element in ADP1, IS1236 (an IS3 family member). Twenty-one independent mutants were analyzed, and in contrast to previous studies of a different chromosomal region, IS1236 was involved in 86% of these events. IS1236-mediated amplification could occur through homologous recombination between insertion sequences on both sides of a duplicated region. However, this mechanism presupposes that transposition generates an appropriately positioned additional copy of IS1236. To evaluate this possibility, PCR and Southern hybridization were used to determine the chromosomal configurations of amplification mutants involving IS1236. Surprisingly, the genomic patterns were inconsistent with the hypothesis that intramolecular homologous recombination occurred between insertion sequences following an initial transposition event. These results raise a novel possibility that the gene amplification events near the IS1236 elements arise from illegitimate recombination involving transposase-mediated DNA cleavage.


Asunto(s)
Acinetobacter/genética , Elementos Transponibles de ADN , Amplificación de Genes , Genes Bacterianos , ADN Bacteriano/metabolismo , Recombinación Genética , Transcripción Genética , Transposasas/metabolismo
6.
Mol Microbiol ; 83(3): 520-35, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22211470

RESUMEN

Renewed interest in gene amplification stems from its importance in evolution and a variety of medical problems ranging from drug resistance to cancer. However, amplified DNA segments (amplicons) are not fully characterized in any organism. Here we report a novel Acinetobacter baylyi system for genome-wide studies. Amplification mutants that consume aromatic compounds were selected under conditions requiring high-level expression from three promoters in a linked set of chromosomal genes. Tools were developed to relocate these catabolic genes to any non-essential chromosomal position, and 49 amplification mutants from five genomic contexts were characterized. Amplicon size (18-271 kb) and copy number (2-105) indicated that 30% of mutants carried more than 1 Mb of amplified DNA. Amplification features depended on genomic position. For example, amplicons from one locus were similarly sized but displayed variable copy number, whereas those from another locus were differently sized but had comparable copy number. Additionally, the importance of sequence context was highlighted in one region where amplicons differed depending on the presence of a promoter mutation in the strain from which they were selected. DNA sequences at amplicon boundaries in 19 mutants reflected illegitimate recombination. Furthermore, steady-state duplication frequencies measured under non-selective conditions (10(-4) to 10(-5) ) confirmed that spontaneous gene duplication is a major source of genetic variation.


Asunto(s)
Acinetobacter/genética , Amplificación de Genes , Dosificación de Gen , Genoma Bacteriano , Secuencia de Bases , Análisis Mutacional de ADN , ADN Bacteriano/genética , Duplicación de Gen , Datos de Secuencia Molecular , Regiones Promotoras Genéticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA