Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Biol Cell ; 34(11): ar109, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37585288

RESUMEN

Previous study has demonstrated that the WNK kinases 1 and 3 are direct osmosensors consistent with their established role in cell-volume control. WNK kinases may also be regulated by hydrostatic pressure. Hydrostatic pressure applied to cells in culture with N2 gas or to Drosophila Malpighian tubules by centrifugation induces phosphorylation of downstream effectors of endogenous WNKs. In vitro, the autophosphorylation and activity of the unphosphorylated kinase domain of WNK3 (uWNK3) is enhanced to a lesser extent than in cells by 190 kPa applied with N2 gas. Hydrostatic pressure measurably alters the structure of uWNK3. Data from size exclusion chromatography in line with multi-angle light scattering (SEC-MALS), SEC alone at different back pressures, analytical ultracentrifugation (AUC), NMR, and chemical crosslinking indicate a change in oligomeric structure in the presence of hydrostatic pressure from a WNK3 dimer to a monomer. The effects on the structure are related to those seen with osmolytes. Potential mechanisms of hydrostatic pressure activation of uWNK3 and the relationships of pressure activation to WNK osmosensing are discussed.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Animales , Proteínas Serina-Treonina Quinasas/metabolismo , Presión Hidrostática , Fosforilación
2.
Nat Commun ; 14(1): 1207, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36864048

RESUMEN

Biogenesis of the large ribosomal (60S) subunit involves the assembly of three rRNAs and 46 proteins, a process requiring approximately 70 ribosome biogenesis factors (RBFs) that bind and release the pre-60S at specific steps along the assembly pathway. The methyltransferase Spb1 and the K-loop GTPase Nog2 are essential RBFs that engage the rRNA A-loop during sequential steps in 60S maturation. Spb1 methylates the A-loop nucleotide G2922 and a catalytically deficient mutant strain (spb1D52A) has a severe 60S biogenesis defect. However, the assembly function of this modification is currently unknown. Here, we present cryo-EM reconstructions that reveal that unmethylated G2922 leads to the premature activation of Nog2 GTPase activity and capture a Nog2-GDP-AlF4- transition state structure that implicates the direct involvement of unmodified G2922 in Nog2 GTPase activation. Genetic suppressors and in vivo imaging indicate that premature GTP hydrolysis prevents the efficient binding of Nog2 to early nucleoplasmic 60S intermediates. We propose that G2922 methylation levels regulate Nog2 recruitment to the pre-60S near the nucleolar/nucleoplasmic phase boundary, forming a kinetic checkpoint to regulate 60S production. Our approach and findings provide a template to study the GTPase cycles and regulatory factor interactions of the other K-loop GTPases involved in ribosome assembly.


Asunto(s)
Procesamiento Postranscripcional del ARN , Subunidades Ribosómicas Grandes de Eucariotas , Cinética , Metilación , Metiltransferasas , Subunidades Ribosómicas Grandes de Eucariotas/genética , GTP Fosfohidrolasas/metabolismo
3.
Nat Struct Mol Biol ; 29(12): 1228-1238, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36482249

RESUMEN

DEAD-box ATPases are ubiquitous enzymes essential in all aspects of RNA biology. However, the limited in vitro catalytic activities described for these enzymes are at odds with their complex cellular roles, most notably in driving large-scale RNA remodeling steps during the assembly of ribonucleoproteins (RNPs). We describe cryo-EM structures of 60S ribosomal biogenesis intermediates that reveal how context-specific RNA unwinding by the DEAD-box ATPase Spb4 results in extensive, sequence-specific remodeling of rRNA secondary structure. Multiple cis and trans interactions stabilize Spb4 in a post-catalytic, high-energy intermediate that drives the organization of the three-way junction at the base of rRNA domain IV. This mechanism explains how limited strand separation by DEAD-box ATPases is leveraged to provide non-equilibrium directionality and ensure efficient and accurate RNP assembly.


Asunto(s)
ARN Helicasas DEAD-box , Proteínas de Saccharomyces cerevisiae , ARN Helicasas DEAD-box/metabolismo , Ribonucleoproteínas/química , ARN Ribosómico , ARN , Adenosina Trifosfatasas , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Cell Rep ; 38(6): 110353, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35139378

RESUMEN

Eukaryotic ribosome biogenesis is facilitated and regulated by numerous ribosome biogenesis factors (RBFs). High-resolution cryoelectron microscopy (cryo-EM) maps have defined the molecular interactions of RBFs during maturation, but many transient and dynamic interactions, particularly during early assembly, remain uncharacterized. Using quantitative proteomics and crosslinking coupled to mass spectrometry (XL-MS) data from an extensive set of pre-ribosomal particles, we derive a comprehensive and time-resolved interaction map of RBF engagement during 60S maturation. We localize 22 previously unmapped RBFs to specific biogenesis intermediates and validate our results by mapping the catalytic activity of the methyltransferases Bmt2 and Rcm1 to their predicted nucleolar 60S intermediates. Our analysis reveals the interaction sites for the RBFs Noc2 and Ecm1 and elucidates the interaction map and timing of 60S engagement by the DEAD-box ATPases Dbp9 and Dbp10. Our data provide a powerful resource for future studies of 60S ribosome biogenesis.


Asunto(s)
Microscopía por Crioelectrón , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Ribosomas/metabolismo , Nucléolo Celular/metabolismo , Microscopía por Crioelectrón/métodos , Modelos Moleculares , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Mol Biol Cell ; 32(18): 1614-1623, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-33689398

RESUMEN

With No Lysine (K) WNK kinases regulate electro-neutral cotransporters that are controlled by osmotic stress and chloride. We showed previously that autophosphorylation of WNK1 is inhibited by chloride, raising the possibility that WNKs are activated by osmotic stress. Here we demonstrate that unphosphorylated WNK isoforms 3 and 1 autophosphorylate in response to osmotic pressure in vitro, applied with the crowding agent polyethylene glycol (PEG)400 or osmolyte ethylene glycol (EG), and that this activation is opposed by chloride. Small angle x-ray scattering of WNK3 in the presence and absence of PEG400, static light scattering in EG, and crystallography of WNK1 were used to understand the mechanism. Osmosensing in WNK3 and WNK1 appears to occur through a conformational equilibrium between an inactive, unphosphorylated, chloride-binding dimer and an autophosphorylation-competent monomer. An improved structure of the inactive kinase domain of WNK1, and a comparison with the structure of a monophosphorylated form of WNK1, suggests that large cavities, greater hydration, and specific bound water may participate in the osmosensing mechanism. Our prior work showed that osmolytes have effects on the structure of phosphorylated WNK1, suggestive of multiple stages of osmotic regulation in WNKs.


Asunto(s)
Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Proteína Quinasa Deficiente en Lisina WNK 1/química , Proteína Quinasa Deficiente en Lisina WNK 1/metabolismo , Autorradiografía , Cromatografía en Gel , Glicol de Etileno/química , Presión Osmótica/fisiología , Fosforilación , Polietilenglicoles/química , Conformación Proteica , Multimerización de Proteína , Dispersión del Ángulo Pequeño , Agua/química , Difracción de Rayos X
6.
Biochemistry ; 59(18): 1747-1755, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32314908

RESUMEN

WNK kinases autoactivate by autophosphorylation. Crystallography of the kinase domain of WNK1 phosphorylated on the primary activating site (pWNK1) in the presence of AMP-PNP reveals a well-ordered but inactive configuration. This new pWNK1 structure features specific and unique interactions of the phosphoserine, less hydration, and smaller cavities compared with those of unphosphorylated WNK1 (uWNK1). Because WNKs are activated by osmotic stress in cells, we addressed whether the structure was influenced directly by osmotic pressure. pWNK1 crystals formed in PEG3350 were soaked in the osmolyte sucrose. Suc-WNK1 crystals maintained X-ray diffraction, but the lattice constants and pWNK1 structure changed. Differences were found in the activation loop and helix C, common switch loci in kinase activation. On the basis of these structural changes, we tested for effects on in vitro activity of two WNKs, pWNK1 and pWNK3. The osmolyte PEG400 enhanced ATPase activity. Our data suggest multistage activation of WNKs.


Asunto(s)
Proteínas Serina-Treonina Quinasas/metabolismo , Proteína Quinasa Deficiente en Lisina WNK 1/metabolismo , Animales , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Fosforilación , Proteínas Serina-Treonina Quinasas/química , Ratas , Proteína Quinasa Deficiente en Lisina WNK 1/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA