Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(23): e2315363121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38805281

RESUMEN

Regulatory T cells (Tregs) are central in controlling immune responses, and dysregulation of their function can lead to autoimmune disorders or cancer. Despite extensive studies on Tregs, the basis of epigenetic regulation of human Treg development and function is incompletely understood. Long intergenic noncoding RNAs (lincRNA)s are important for shaping and maintaining the epigenetic landscape in different cell types. In this study, we identified a gene on the chromosome 6p25.3 locus, encoding a lincRNA, that was up-regulated during early differentiation of human Tregs. The lincRNA regulated the expression of interleukin-2 receptor alpha (IL2RA), and we named it the lincRNA regulator of IL2RA (LIRIL2R). Through transcriptomics, epigenomics, and proteomics analysis of LIRIL2R-deficient Tregs, coupled with global profiling of LIRIL2R binding sites using chromatin isolation by RNA purification, followed by sequencing, we identified IL2RA as a target of LIRIL2R. This nuclear lincRNA binds upstream of the IL2RA locus and regulates its epigenetic landscape and transcription. CRISPR-mediated deletion of the LIRIL2R-bound region at the IL2RA locus resulted in reduced IL2RA expression. Notably, LIRIL2R deficiency led to reduced expression of Treg-signature genes (e.g., FOXP3, CTLA4, and PDCD1), upregulation of genes associated with effector T cells (e.g., SATB1 and GATA3), and loss of Treg-mediated suppression.


Asunto(s)
Factores de Transcripción Forkhead , Subunidad alfa del Receptor de Interleucina-2 , ARN Largo no Codificante , Linfocitos T Reguladores , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Subunidad alfa del Receptor de Interleucina-2/genética , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Epigénesis Genética , Regulación de la Expresión Génica , Diferenciación Celular/genética
2.
Environ Int ; 186: 108569, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38522229

RESUMEN

Environmental toxicants (ETs) are associated with adverse health outcomes. Here we hypothesized that exposures to ETs are linked with obesity and insulin resistance partly through a dysbiotic gut microbiota and changes in the serum levels of secondary bile acids (BAs). Serum BAs, per- and polyfluoroalkyl substances (PFAS) and additional twenty-seven ETs were measured by mass spectrometry in 264 Danes (121 men and 143 women, aged 56.6 ± 7.3 years, BMI 29.7 ± 6.0 kg/m2) using a combination of targeted and suspect screening approaches. Bacterial species were identified based on whole-genome shotgun sequencing (WGS) of DNA extracted from stool samples. Personalized genome-scale metabolic models (GEMs) of gut microbial communities were developed to elucidate regulation of BA pathways. Subsequently, we compared findings from the human study with metabolic implications of exposure to perfluorooctanoic acid (PFOA) in PPARα-humanized mice. Serum levels of twelve ETs were associated with obesity and insulin resistance. High chemical exposure was associated with increased abundance of several bacterial species (spp.) of genus (Anaerotruncus, Alistipes, Bacteroides, Bifidobacterium, Clostridium, Dorea, Eubacterium, Escherichia, Prevotella, Ruminococcus, Roseburia, Subdoligranulum, and Veillonella), particularly in men. Conversely, females in the higher exposure group, showed a decrease abundance of Prevotella copri. High concentrations of ETs were correlated with increased levels of secondary BAs including lithocholic acid (LCA), and decreased levels of ursodeoxycholic acid (UDCA). In silico causal inference analyses suggested that microbiome-derived secondary BAs may act as mediators between ETs and obesity or insulin resistance. Furthermore, these findings were substantiated by the outcome of the murine exposure study. Our combined epidemiological and mechanistic studies suggest that multiple ETs may play a role in the etiology of obesity and insulin resistance. These effects may arise from disruptions in the microbial biosynthesis of secondary BAs.


Asunto(s)
Disbiosis , Exposición a Riesgos Ambientales , Contaminantes Ambientales , Microbioma Gastrointestinal , Resistencia a la Insulina , Obesidad , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Obesidad/microbiología , Persona de Mediana Edad , Femenino , Masculino , Disbiosis/inducido químicamente , Animales , Ratones , Ácidos y Sales Biliares/metabolismo , Anciano
3.
Biol Psychiatry ; 95(4): 370-379, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38061464

RESUMEN

BACKGROUND: The gut microbiome has been implicated in the pathogenesis of mental disorders where the gut-brain axis acts as a bidirectional communication network. METHODS: Herein, we investigated the compositional and functional differences of gut microbiome between patients with first-episode psychosis (FEP) (n = 26) and healthy control participants (n = 22) using whole-genome shotgun sequencing. In addition, we assessed the oral microbiome in patients with FEP (n = 13) and listed their taxonomic diversity. RESULTS: Our findings suggest that there is a dysbiosis of gut microbiota in patients with FEP. Relative abundance of Bifidobacterium adolescentis, Prevotella copri, and Turicibacter sanguinis was markedly increased (linear discriminant analysis scores [log10] > 1, and Mann-Whitney U test; false discovery rate-adjusted p values < .05) in the FEP group compared with the healthy control participants. Pathway analysis indicated that several metabolic pathways, particularly deoxyribonucleotide biosynthesis, branched-chain amino acid biosynthesis, tricarboxylic acid cycle, and fatty acid elongation and biosynthesis, were dysregulated in the FEP group compared with the healthy control group. In addition, this preliminary study was able to identify specific gut microbes (at baseline) that were predictive of weight gain in the FEP group at a 1-year follow-up. Bacteroides dorei, Bifidobacterium adolescentis, Turicibacter sanguinis, Roseburia spp., and Ruminococcus lactaris were positively associated (eXtreme gradient boosting, XGBoost regression model, Shapley additive explanations, R2 = 0.82) with weight gain. CONCLUSIONS: Our findings may suggest the involvement of gut microbiota in the pathogenesis of psychosis. The benefit of modulation of the gut microbiome in the treatment of psychotic disorders should be explored further.


Asunto(s)
Microbiota , Trastornos Psicóticos , Humanos , Firmicutes , Aumento de Peso
5.
Front Endocrinol (Lausanne) ; 14: 1211015, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37745723

RESUMEN

Aims/hypothesis: Appearance of multiple islet cell autoantibodies in early life is indicative of future progression to overt type 1 diabetes, however, at varying rates. Here, we aimed to study whether distinct metabolic patterns could be identified in rapid progressors (RP, disease manifestation within 18 months after the initial seroconversion to autoantibody positivity) vs. slow progressors (SP, disease manifestation at 60 months or later from the appearance of the first autoantibody). Methods: Longitudinal samples were collected from RP (n=25) and SP (n=41) groups at the ages of 3, 6, 12, 18, 24, or ≥ 36 months. We performed a comprehensive metabolomics study, analyzing both polar metabolites and lipids. The sample series included a total of 239 samples for lipidomics and 213 for polar metabolites. Results: We observed that metabolites mediated by gut microbiome, such as those involved in tryptophan metabolism, were the main discriminators between RP and SP. The study identified specific circulating molecules and pathways, including amino acid (threonine), sugar derivatives (hexose), and quinic acid that may define rapid vs. slow progression to type 1 diabetes. However, the circulating lipidome did not appear to play a major role in differentiating between RP and SP. Conclusion/interpretation: Our study suggests that a distinct metabolic profile is linked with the type 1 diabetes progression. The identification of specific metabolites and pathways that differentiate RP from SP may have implications for early intervention strategies to delay the development of type 1 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 1 , Islotes Pancreáticos , Humanos , Niño , Metabolómica , Aminoácidos , Autoanticuerpos
6.
Metabolites ; 13(7)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37512562

RESUMEN

Recent advancements in omics technologies have generated a wealth of biological data. Integrating these data within mathematical models is essential to fully leverage their potential. Genome-scale metabolic models (GEMs) provide a robust framework for studying complex biological systems. GEMs have significantly contributed to our understanding of human metabolism, including the intrinsic relationship between the gut microbiome and the host metabolism. In this review, we highlight the contributions of GEMs and discuss the critical challenges that must be overcome to ensure their reproducibility and enhance their prediction accuracy, particularly in the context of precision medicine. We also explore the role of machine learning in addressing these challenges within GEMs. The integration of omics data with GEMs has the potential to lead to new insights, and to advance our understanding of molecular mechanisms in human health and disease.

7.
Front Artif Intell ; 6: 1155404, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37207237

RESUMEN

Outcome research that supports guideline recommendations for primary and secondary preventions largely depends on the data obtained from clinical trials or selected hospital populations. The exponentially growing amount of real-world medical data could enable fundamental improvements in cardiovascular disease (CVD) prediction, prevention, and care. In this review we summarize how data from health insurance claims (HIC) may improve our understanding of current health provision and identify challenges of patient care by implementing the perspective of patients (providing data and contributing to society), physicians (identifying at-risk patients, optimizing diagnosis and therapy), health insurers (preventive education and economic aspects), and policy makers (data-driven legislation). HIC data has the potential to inform relevant aspects of the healthcare systems. Although HIC data inherit limitations, large sample sizes and long-term follow-up provides enormous predictive power. Herein, we highlight the benefits and limitations of HIC data and provide examples from the cardiovascular field, i.e. how HIC data is supporting healthcare, focusing on the demographical and epidemiological differences, pharmacotherapy, healthcare utilization, cost-effectiveness and outcomes of different treatments. As an outlook we discuss the potential of using HIC-based big data and modern artificial intelligence (AI) algorithms to guide patient education and care, which could lead to the development of a learning healthcare system and support a medically relevant legislation in the future.

8.
Comput Struct Biotechnol J ; 21: 1372-1382, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36817954

RESUMEN

Cancer progression is linked to gene-environment interactions that alter cellular homeostasis. The use of biomarkers as early indicators of disease manifestation and progression can substantially improve diagnosis and treatment. Large omics datasets generated by high-throughput profiling technologies, such as microarrays, RNA sequencing, whole-genome shotgun sequencing, nuclear magnetic resonance, and mass spectrometry, have enabled data-driven biomarker discoveries. The identification of differentially expressed traits as molecular markers has traditionally relied on statistical techniques that are often limited to linear parametric modeling. The heterogeneity, epigenetic changes, and high degree of polymorphism observed in oncogenes demand biomarker-assisted personalized medication schemes. Deep learning (DL), a major subunit of machine learning (ML), has been increasingly utilized in recent years to investigate various diseases. The combination of ML/DL approaches for performance optimization across multi-omics datasets produces robust ensemble-learning prediction models, which are becoming useful in precision medicine. This review focuses on the recent development of ML/DL methods to provide integrative solutions in discovering cancer-related biomarkers, and their utilization in precision medicine.

9.
Cell Rep Med ; 3(10): 100762, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36195095

RESUMEN

The gut microbiota is crucial in the regulation of bile acid (BA) metabolism. However, not much is known about the regulation of BAs during progression to type 1 diabetes (T1D). Here, we analyzed serum and stool BAs in longitudinal samples collected at 3, 6, 12, 18, 24, and 36 months of age from children who developed a single islet autoantibody (AAb) (P1Ab; n = 23) or multiple islet AAbs (P2Ab; n = 13) and controls (CTRs; n = 38) who remained AAb negative. We also analyzed the stool microbiome in a subgroup of these children. Factor analysis showed that age had the strongest impact on both BA and microbiome profiles. We found that at an early age, systemic BAs and microbial secondary BA pathways were altered in the P2Ab group compared with the P1Ab and CTR groups. Our findings thus suggest that dysregulated BA metabolism in early life may contribute to the risk and pathogenesis of T1D.


Asunto(s)
Diabetes Mellitus Tipo 1 , Islotes Pancreáticos , Niño , Humanos , Autoinmunidad , Islotes Pancreáticos/química , Autoanticuerpos/análisis , Ácidos y Sales Biliares
10.
iScience ; 25(9): 104949, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36065182

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is an increasingly prevalent disease that is associated with multiple metabolic disturbances, yet the metabolic pathways underlying its progression are poorly understood. Here, we studied metabolic pathways of the human liver across the full histological spectrum of NAFLD. We analyzed whole liver tissue transcriptomics and serum metabolomics data obtained from a large, prospectively enrolled cohort of 206 histologically characterized patients derived from the European NAFLD Registry and developed genome-scale metabolic models (GEMs) of human hepatocytes at different stages of NAFLD. We identified several metabolic signatures in the liver and blood of these patients, specifically highlighting the alteration of vitamins (A, E) and glycosphingolipids, and their link with complex glycosaminoglycans in advanced fibrosis. Furthermore, we derived GEMs and identified metabolic signatures of three common NAFLD-associated gene variants (PNPLA3, TM6SF2, and HSD17B13). The study demonstrates dysregulated liver metabolic pathways which may contribute to the progression of NAFLD.

11.
Metabolomics ; 18(8): 65, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35922643

RESUMEN

INTRODUCTION: Bipolar disorder (BD) is a mood disorder characterized by the occurrence of depressive episodes alternating with episodes of elevated mood (known as mania). There is also an increased risk of other medical comorbidities. OBJECTIVES: This work uses a systems biology approach to compare BD treated patients with healthy controls (HCs), integrating proteomics and metabolomics data using partial correlation analysis in order to observe the interactions between altered proteins and metabolites, as well as proposing a potential metabolic signature panel for the disease. METHODS: Data integration between proteomics and metabolomics was performed using GC-MS data and label-free proteomics from the same individuals (N = 13; 5 BD, 8 HC) using generalized canonical correlation analysis and partial correlation analysis, and then building a correlation network between metabolites and proteins. Ridge-logistic regression models were developed to stratify between BD and HC groups using an extended metabolomics dataset (N = 28; 14 BD, 14 HC), applying a recursive feature elimination for the optimal selection of the metabolites. RESULTS: Network analysis demonstrated links between proteins and metabolites, pointing to possible alterations in hemostasis of BD patients. Ridge-logistic regression model indicated a molecular signature comprising 9 metabolites, with an area under the receiver operating characteristic curve (AUROC) of 0.833 (95% CI 0.817-0.914). CONCLUSION: From our results, we conclude that several metabolic processes are related to BD, which can be considered as a multi-system disorder. We also demonstrate the feasibility of partial correlation analysis for integration of proteomics and metabolomics data in a case-control study setting.


Asunto(s)
Trastorno Bipolar , Metabolómica , Estudios de Casos y Controles , Hemostasis , Humanos , Metabolómica/métodos , Proteómica
12.
J Hepatol ; 76(2): 283-293, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34627976

RESUMEN

BACKGROUND & AIMS: Recent experimental models and epidemiological studies suggest that specific environmental contaminants (ECs) contribute to the initiation and pathology of non-alcoholic fatty liver disease (NAFLD). However, the underlying mechanisms linking EC exposure with NAFLD remain poorly understood and there is no data on their impact on the human liver metabolome. Herein, we hypothesized that exposure to ECs, particularly perfluorinated alkyl substances (PFAS), impacts liver metabolism, specifically bile acid metabolism. METHODS: In a well-characterized human NAFLD cohort of 105 individuals, we investigated the effects of EC exposure on liver metabolism. We characterized the liver (via biopsy) and circulating metabolomes using 4 mass spectrometry-based analytical platforms, and measured PFAS and other ECs in serum. We subsequently compared these results with an exposure study in a PPARa-humanized mouse model. RESULTS: PFAS exposure appears associated with perturbation of key hepatic metabolic pathways previously found altered in NAFLD, particularly those related to bile acid and lipid metabolism. We identified stronger associations between the liver metabolome, chemical exposure and NAFLD-associated clinical variables (liver fat content, HOMA-IR), in females than males. Specifically, we observed PFAS-associated upregulation of bile acids, triacylglycerols and ceramides, and association between chemical exposure and dysregulated glucose metabolism in females. The murine exposure study further corroborated our findings, vis-à-vis a sex-specific association between PFAS exposure and NAFLD-associated lipid changes. CONCLUSIONS: Females may be more sensitive to the harmful impacts of PFAS. Lipid-related changes subsequent to PFAS exposure may be secondary to the interplay between PFAS and bile acid metabolism. LAY SUMMARY: There is increasing evidence that specific environmental contaminants, such as perfluorinated alkyl substances (PFAS), contribute to the progression of non-alcoholic fatty liver disease (NAFLD). However, it is poorly understood how these chemicals impact human liver metabolism. Here we show that human exposure to PFAS impacts metabolic processes associated with NAFLD, and that the effect is different in females and males.


Asunto(s)
Exposición a Riesgos Ambientales/efectos adversos , Metabolismo de los Lípidos/fisiología , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Adulto , Aminoácidos/análisis , Aminoácidos/sangre , Animales , Estudios de Cohortes , Modelos Animales de Enfermedad , Exposición a Riesgos Ambientales/estadística & datos numéricos , Ácidos Grasos no Esterificados/análisis , Ácidos Grasos no Esterificados/sangre , Femenino , Humanos , Metabolismo de los Lípidos/inmunología , Masculino , Ratones , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/metabolismo
13.
Cell Rep ; 37(6): 109973, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34758307

RESUMEN

T cell activation, proliferation, and differentiation involve metabolic reprogramming resulting from the interplay of genes, proteins, and metabolites. Here, we aim to understand the metabolic pathways involved in the activation and functional differentiation of human CD4+ T cell subsets (T helper [Th]1, Th2, Th17, and induced regulatory T [iTreg] cells). Here, we combine genome-scale metabolic modeling, gene expression data, and targeted and non-targeted lipidomics experiments, together with in vitro gene knockdown experiments, and show that human CD4+ T cells undergo specific metabolic changes during activation and functional differentiation. In addition, we confirm the importance of ceramide and glycosphingolipid biosynthesis pathways in Th17 differentiation and effector functions. Through in vitro gene knockdown experiments, we substantiate the requirement of serine palmitoyltransferase (SPT), a de novo sphingolipid pathway in the expression of proinflammatory cytokines (interleukin [IL]-17A and IL17F) by Th17 cells. Our findings provide a comprehensive resource for selective manipulation of CD4+ T cells under disease conditions characterized by an imbalance of Th17/natural Treg (nTreg) cells.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Diferenciación Celular , Ceramidas/metabolismo , Glicoesfingolípidos/metabolismo , Metaboloma , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , Linfocitos T CD4-Positivos/metabolismo , Genoma Humano , Humanos , Activación de Linfocitos , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
14.
Sci Rep ; 11(1): 13252, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34168163

RESUMEN

Knowledge about in vivo effects of human circulating C-6 hydroxylated bile acids (BAs), also called muricholic acids, is sparse. It is unsettled if the gut microbiome might contribute to their biosynthesis. Here, we measured a range of serum BAs and related them to markers of human metabolic health and the gut microbiome. We examined 283 non-obese and obese Danish adults from the MetaHit study. Fasting concentrations of serum BAs were quantified using ultra-performance liquid chromatography-tandem mass-spectrometry. The gut microbiome was characterized with shotgun metagenomic sequencing and genome-scale metabolic modeling. We find that tauro- and glycohyocholic acid correlated inversely with body mass index (P = 4.1e-03, P = 1.9e-05, respectively), waist circumference (P = 0.017, P = 1.1e-04, respectively), body fat percentage (P = 2.5e-03, P = 2.3e-06, respectively), insulin resistance (P = 0.051, P = 4.6e-4, respectively), fasting concentrations of triglycerides (P = 0.06, P = 9.2e-4, respectively) and leptin (P = 0.067, P = 9.2e-4). Tauro- and glycohyocholic acids, and tauro-a-muricholic acid were directly linked with a distinct gut microbial community primarily composed of Clostridia species (P = 0.037, P = 0.013, P = 0.027, respectively). We conclude that serum conjugated C-6-hydroxylated BAs associate with measures of human metabolic health and gut communities of Clostridia species. The findings merit preclinical interventions and human feasibility studies to explore the therapeutic potential of these BAs in obesity and type 2 diabetes.


Asunto(s)
Ácidos y Sales Biliares/sangre , Clostridium/metabolismo , Microbioma Gastrointestinal , Adiposidad , Índice de Masa Corporal , Ácidos Cólicos/sangre , Cromatografía Líquida de Alta Presión , Clostridium/genética , Ácido Desoxicólico/sangre , Femenino , Microbioma Gastrointestinal/genética , Humanos , Modelos Logísticos , Masculino , Metagenómica , Persona de Mediana Edad , Obesidad/sangre , Obesidad/microbiología , Espectrometría de Masas en Tándem , Ácido Taurocólico/sangre , Circunferencia de la Cintura
16.
Metabolites ; 11(1)2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33467644

RESUMEN

Various studies aiming to elucidate the role of the gut microbiome-metabolome co-axis in health and disease have primarily focused on water-soluble polar metabolites, whilst non-polar microbial lipids have received less attention. The concept of microbiota-dependent lipid biotransformation is over a century old. However, only recently, several studies have shown how microbial lipids alter intestinal and circulating lipid concentrations in the host, thus impacting human lipid homeostasis. There is emerging evidence that gut microbial communities play a particularly significant role in the regulation of host cholesterol and sphingolipid homeostasis. Here, we review and discuss recent research focusing on microbe-host-lipid co-metabolism. We also discuss the interplay of human gut microbiota and molecular lipids entering host systemic circulation, and its role in health and disease.

17.
Brief Bioinform ; 22(2): 1531-1542, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-32940335

RESUMEN

Deep learning (DL), an emerging area of investigation in the fields of machine learning and artificial intelligence, has markedly advanced over the past years. DL techniques are being applied to assist medical professionals and researchers in improving clinical diagnosis, disease prediction and drug discovery. It is expected that DL will help to provide actionable knowledge from a variety of 'big data', including metabolomics data. In this review, we discuss the applicability of DL to metabolomics, while presenting and discussing several examples from recent research. We emphasize the use of DL in tackling bottlenecks in metabolomics data acquisition, processing, metabolite identification, as well as in metabolic phenotyping and biomarker discovery. Finally, we discuss how DL is used in genome-scale metabolic modelling and in interpretation of metabolomics data. The DL-based approaches discussed here may assist computational biologists with the integration, prediction and drawing of statistical inference about biological outcomes, based on metabolomics data.


Asunto(s)
Aprendizaje Profundo , Metabolómica , Conjuntos de Datos como Asunto , Femenino , Humanos , Embarazo
18.
Biol Psychiatry ; 89(3): 288-297, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-32928501

RESUMEN

BACKGROUND: A key clinical challenge in the management of individuals at clinical high risk for psychosis (CHR) is that it is difficult to predict their future clinical outcomes. Here, we investigated if the levels of circulating molecular lipids are related to adverse clinical outcomes in this group. METHODS: Serum lipidomic analysis was performed in 263 CHR individuals and 51 healthy control subjects, who were then clinically monitored for up to 5 years. Machine learning was used to identify lipid profiles that discriminated between CHR and control subjects, and between subgroups of CHR subjects with distinct clinical outcomes. RESULTS: At baseline, compared with control subjects, CHR subjects (independent of outcome) had higher levels of triacylglycerols with a low acyl carbon number and a double bond count, as well as higher levels of lipids in general. CHR subjects who subsequently developed psychosis (n = 50) were distinguished from those that did not (n = 213) on the basis of lipid profile at baseline using a model with an area under the receiver operating curve of 0.81 (95% confidence interval = 0.69-0.93). CHR subjects who became psychotic had lower levels of ether phospholipids than CHR individuals who did not (p < .01). CONCLUSIONS: Collectively, these data suggest that lipidomic abnormalities predate the onset of psychosis and that blood lipidomic measures may be useful in predicting which CHR individuals are most likely to develop psychosis.


Asunto(s)
Metabolismo de los Lípidos , Trastornos Psicóticos , Humanos , Aprendizaje Automático
19.
Artículo en Inglés | MEDLINE | ID: mdl-33278596

RESUMEN

Lipids have many important biological roles, such as energy storage sources, structural components of plasma membranes and as intermediates in metabolic and signaling pathways. Lipid metabolism is under tight homeostatic control, exhibiting spatial and dynamic complexity at multiple levels. Consequently, lipid-related disturbances play important roles in the pathogenesis of most of the common diseases. Lipidomics, defined as the study of lipidomes in biological systems, has emerged as a rapidly-growing field. Due to the chemical and functional diversity of lipids, the application of a systems biology approach is essential if one is to address lipid functionality at different physiological levels. In parallel with analytical advances to measure lipids in biological matrices, the field of computational lipidomics has been rapidly advancing, enabling modeling of lipidomes in their pathway, spatial and dynamic contexts. This review focuses on recent progress in systems biology approaches to study lipids in health and disease, with specific emphasis on methodological advances and biomedical applications.


Asunto(s)
Investigación Biomédica/métodos , Metabolismo de los Lípidos/fisiología , Lipidómica/métodos , Biología de Sistemas/métodos , Investigación Biomédica/tendencias , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Lipidómica/tendencias , Enfermedades Neurodegenerativas/diagnóstico , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/terapia , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/terapia , Obesidad/diagnóstico , Obesidad/metabolismo , Obesidad/terapia , Trastornos Psicóticos/diagnóstico , Trastornos Psicóticos/metabolismo , Trastornos Psicóticos/terapia , Biología de Sistemas/tendencias
20.
Schizophr Bull ; 47(1): 160-169, 2021 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-32609372

RESUMEN

Patients with schizophrenia have a lower than average life span, largely due to the increased prevalence of cardiometabolic comorbidities. There is an unmet public health need to identify individuals with psychotic disorders who have a high risk of rapid weight gain and who are at risk of developing metabolic complications. Here, we applied mass spectrometry-based lipidomics in a prospective study comprising 48 healthy controls (CTR), 44 first-episode psychosis (FEP) patients, and 22 individuals at clinical high risk (CHR) for psychosis, from 2 study centers (Turku, Finland and London, UK). Baseline serum samples were analyzed using lipidomics, and body mass index (BMI) was assessed at baseline and after 12 months. We found that baseline triacylglycerols (TGs) with low double-bond counts and carbon numbers were positively associated with the change in BMI at follow-up. In addition, a molecular signature comprised of 2 TGs (TG[48:0] and TG[45:0]) was predictive of weight gain in individuals with a psychotic disorder, with an area under the receiver operating characteristic curve (AUROC) of 0.74 (95% CI: 0.60-0.85). When independently tested in the CHR group, this molecular signature predicted said weight change with AUROC = 0.73 (95% CI: 0.61-0.83). We conclude that molecular lipids may serve as a predictor of weight gain in psychotic disorders in at-risk individuals and may thus provide a useful marker for identifying individuals who are most prone to developing cardiometabolic comorbidities.


Asunto(s)
Trastornos Psicóticos/sangre , Trastornos Psicóticos/fisiopatología , Esquizofrenia/sangre , Esquizofrenia/fisiopatología , Triglicéridos/sangre , Aumento de Peso/fisiología , Adulto , Biomarcadores/sangre , Índice de Masa Corporal , Estudios de Casos y Controles , Susceptibilidad a Enfermedades , Femenino , Estudios de Seguimiento , Humanos , Lipidómica , Masculino , Espectrometría de Masas , Riesgo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA