Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Foods ; 12(18)2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37761085

RESUMEN

The main aim of this study was to investigate the quality and nutritional properties (dietary fiber, phenolic, antioxidant contents, and glycemic index) of breads made from whole wheat flours of colored wheats. White (cultivar Agronomicheskaya 5), red (Element 22), purple (EF 22 and Purple 8), and blue (Blue 10) colored wheats were used in the study. The whole wheat flours of Blue 10 and Purple 8 had higher farinograph stability, lower softening degree, and higher quality numbers indicating that they had better rheological properties. Bread produced from whole wheat flour of blue-colored grain had significantly higher loaf volume and better symmetry, crust color, crumb cell structure, and softness values among others (p < 0.05). The whole wheat bread produced using Element 22 had the highest crust and crumb L* color values, while Purple 8 and EF 22 had the lowest crust and crumb L* color values, suggesting that purple-colored grains have a tendency to make whole wheat bread with darker crust and crumb color. Bread produced from cultivar Blue 10 had the lowest firmness values while Element 22 had the highest firmness values. The highest total phenolic content and antioxidant capacity values were obtained from the whole wheat bread sample from purple-colored wheat (Purple 8). The whole wheat flour of Element 22 had the highest total dietary fiber content among all samples (p < 0.05). The differences between whole wheat bread samples in terms of total dietary fiber and glycemic index were not statistically significant. The results of the present study indicated that colored wheats can be used to produce whole wheat breads with higher nutritional properties and acceptable quality characteristics.

2.
Foods ; 12(11)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37297355

RESUMEN

Intermediate wheatgrass (IWG; Thinopyrum intermedium), a nutritionally dense and sustainable crop, is a promising novel ingredient in bakery applications. The main aim of this study was to investigate the potential of IWG as a novel ingredient in breadmaking. The second aim was to investigate the characteristics of breads substituted with 15, 30, 45, and 60% IWG flour compared to control bread produced using wheat flour. The gluten content and quality, bread quality, bread staling, yellow pigment, and phenolic and antioxidant properties were determined. Enrichment with IWG flours significantly affected the gluten content and quality and bread characteristics. Increased levels of IWG flour substitution significantly decreased the Zeleny sedimentation and gluten index values and increased the dry and wet gluten contents. The bread yellow pigment content and crumb b* colour value increased with the increasing level of IWG supplementation. IWG addition also had a positive effect on the phenolic and antioxidant properties. Bread with 15% IWG substitution had the highest bread volume (485 mL) and lowest firmness values (654 g-force; g-f) compared to the other breads, including the control (i.e., wheat flour bread). The results indicated that IWG has great potential to be used in bread production as a novel, healthy, and sustainable ingredient.

3.
Plants (Basel) ; 12(12)2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37375926

RESUMEN

In this study, 21 synthetic hexaploid wheat samples were analyzed and compared for phenolic content (the Folin-Ciocalteu method), phenolic compositions, and antioxidant activity (DPPH, ABTS, and CUPRAC). The aim of the study was to determine the phenolic content and antioxidant activity of synthetic wheat lines developed from Ae. Tauschii, which has a wide genetic diversity, to be used in breeding programs for developing new varieties with better nutritional properties. Bound, free, and total phenolic contents (TPCs) of wheat samples were determined as 145.38-258.55 mg GAE/100 g wheat, 188.19-369.38 mg GAE/100 g wheat, and 333.58-576.93 mg GAE/100 g wheat, respectively. Phenolic compositions were detected by the HPLC system. Gallic acid was found in the highest concentrations in free fractions, whereas gallic, p-coumaric acid, and chlorogenic acid were generally found in the highest concentrations in bound fractions of the synthetic hexaploid wheat samples. The antioxidant activities (AA%) of the wheat samples were evaluated by the DPPH assay. AA% in the free extracts of the synthetic red wheat samples ranged from 33.0% to 40.5%, and AA% values in the bound extracts of the synthetic hexaploid wheat samples varied between 34.4% and 50.6%. ABTS and CUPRAC analyses were also used to measure antioxidant activities. The ABTS values of the free and bound extracts and total ABTS values of the synthetic wheat samples ranged from 27.31 to 123.18, 61.65 to 263.23, and 93.94 to 308.07 mg TE/100 g, respectively. The corresponding CUPRAC values of the synthetic wheats were between 25.78-160.94, 75.35-308.13, and 107.51-364.79 mg TE/100 g. This study revealed that synthetic hexaploid wheat samples are valuable resources for breeding programs for developing new wheat varieties with higher concentrations and better compositions of health-beneficial phytochemicals. The samples w1 (Ukr.-Od. 1530.94/Ae. squarrosa (629)), w18 (Ukr.-Od. 1530.94/Ae. squarrosa (1027)), and w20 (Ukr.-Od. 1530.94/Ae. squarrosa (392)) can be used as a genetic resource in breeding programs to enhance the nutritional quality of wheat.

4.
Foods ; 11(16)2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-36010514

RESUMEN

The total phenolic content, phenolic compositions, and antioxidant capacity in the grain of 40 purple wheat genotypes were studied. In this study, purple wheats were investigated in terms of their composition of free and bound phenolic acids and 2,2-diphenyl-1-picrylhydrazyl radical scavenging capacity. The free phenolic content ranged from 164.25 to 271.05 mg GAE/100 g DW and the bound phenolic content was between 182.89-565.62 mg GAE/100 g wheat. The total phenolic content of purple wheat samples ranged from 352.65 to 771.83 mg GAE/100 g wheat. Gallic acid, protocatechuic acid, catechin, 4-hydroxybenzoic acid, syringic acid, ellagic acid, m-coumaric acid, o-coumaric acid, chrysin, caffeic acid, p-coumaric acid, ferulic acid, quercetin, kaempferol, rutin, sinapic acid, and chlorogenic acid were detected by HPLC system. Gallic acid, benzoic acid derivatives, and dominant phenolics, which are frequently found in cereals, were also dominant in purple wheat samples and were found in free fractions. The antioxidant capacity was assessed using the DPPH method. The antioxidant capacity (AA%) in the free phenolic extracts of the purple wheats was between 39.7% and 59.5%, and the AA% values of bound phenolic extract of the purple wheat varied between 42.6% and 62.7%. This study suggested that purple wheat samples have high phenolic compound content as antioxidant potential and therefore consumption of purple wheat-containing food products may provide health benefits.

5.
Front Plant Sci ; 13: 882440, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720526

RESUMEN

The objective of this study was to investigate the re-emergence of a previously important crop pathogen in Europe, Puccinia graminis f.sp. tritici, causing wheat stem rust. The pathogen has been insignificant in Europe for more than 60 years, but since 2016 it has caused epidemics on both durum wheat and bread wheat in local areas in southern Europe, and additional outbreaks in Central- and West Europe. The prevalence of three distinct genotypes/races in many areas, Clade III-B (TTRTF), Clade IV-B (TKTTF) and Clade IV-F (TKKTF), suggested clonal reproduction and evolution by mutation within these. None of these genetic groups and races, which likely originated from exotic incursions, were detected in Europe prior to 2016. A fourth genetic group, Clade VIII, detected in Germany (2013), was observed in several years in Central- and East Europe. Tests of representative European wheat varieties with prevalent races revealed high level of susceptibility. In contrast, high diversity with respect to virulence and Simple Sequence Repeat (SSR) markers were detected in local populations on cereals and grasses in proximity to Berberis species in Spain and Sweden, indicating that the alternate host may return as functional component of the epidemiology of wheat stem rust in Europe. A geographically distant population from Omsk and Novosibirsk in western Siberia (Russia) also revealed high genetic diversity, but clearly different from current European populations. The presence of Sr31-virulence in multiple and highly diverse races in local populations in Spain and Siberia stress that virulence may emerge independently when large geographical areas and time spans are considered and that Sr31-virulence is not unique to Ug99. All isolates of the Spanish populations, collected from wheat, rye and grass species, were succesfully recovered on wheat, which underline the plasticity of host barriers within P. graminis. The study demonstrated successful alignment of two genotyping approaches and race phenotyping methodologies employed by different laboratories, which also allowed us to line up with previous European and international studies of wheat stem rust. Our results suggest new initiatives within disease surveillance, epidemiological research and resistance breeding to meet current and future challenges by wheat stem rust in Europe and beyond.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA