Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38772940

RESUMEN

The underlying brain mechanisms of ketamine in treating chronic suicidality and the characteristics of patients who will benefit from ketamine treatment remain unclear. To address these gaps, we investigated temporal variations of brain functional synchronisation in patients with suicidality treated with ketamine in a 6-week open-label oral ketamine trial. The trial's primary endpoint was the Beck Scale for Suicide Ideation (BSS). Patients who experienced greater than 50% improvement in BSS scores or had a BSS score less than 6 at the post-treatment and follow-up (10 weeks) visits were considered responders and persistent responders, respectively. The reoccurring and transient connectivity pattern (termed brain state) from 29 patients (45.6 years ± 14.5, 15 females) were investigated by dynamic functional connectivity analysis of resting-state functional MRI at the baseline, post-treatment, and follow-up. Post-treatment patients showed significantly more (FDR-Q = 0.03) transitions among whole brain states than at baseline. We also observed increased dwelling time (FDR-Q = 0.04) and frequency (FDR-Q = 0.04) of highly synchronised brain state at follow-up, which were significantly correlated with BSS scores (both FDR-Q = 0.008). At baseline, persistent responders had higher fractions (FDR-Q = 0.03, Cohen's d = 1.39) of a cognitive control network state with high connectivities than non-responders. These findings suggested that ketamine enhanced brain changes among different synchronisation patterns and enabled high synchronisation patterns in the long term, providing a possible biological pathway for its suicide-prevention effects. Moreover, differences in cognitive control states at baseline may be used for precise ketamine treatment planning.

2.
J Magn Reson Imaging ; 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38339792

RESUMEN

BACKGROUND: The brainstem is a crucial component of the central autonomic nervous (CAN) system. Functional MRI (fMRI) of the brainstem remains challenging due to a range of factors, including diverse imaging protocols, analysis, and interpretation. PURPOSE: To develop an fMRI protocol for establishing a functional atlas in the brainstem. STUDY TYPE: Prospective cross-sectional study. SUBJECTS: Ten healthy subjects (four males, six females). FIELD STRENGTH/SEQUENCE: Using a 3.0 Tesla MR scanner, we acquired T1-weighted images and three different fMRI scans using fMRI protocols of the optimized functional Imaging of Brainstem (FIBS), the Human Connectome Project (HCP), and the Adolescent Brain Cognitive Development (ABCD) project. ASSESSMENT: The temporal signal-to-noise-ratio (TSNR) of fMRI data was compared between the FIBS, HCP, and ABCD protocols. Additionally, the main normalization algorithms (i.e., FSL-FNIRT, SPM-DARTEL, and ANTS-SyN) were compared to identify the best approach to normalize brainstem data using root-mean-square (RMS) error computed based on manually defined reference points. Finally, a functional autonomic brainstem atlas that maps brainstem regions involved in the CAN system was defined using meta-analysis and data-driven approaches. STATISTICAL TESTS: ANOVA was used to compare the performance of different imaging and preprocessing pipelines with multiple comparison corrections (P ≤ 0.05). Dice coefficient estimated ROI overlap, with 50% overlap between ROIs identified in each approach considered significant. RESULTS: The optimized FIBS protocol showed significantly higher brainstem TSNR than the HCP and ABCD protocols (P ≤ 0.05). Furthermore, FSL-FNIRT RMS error (2.1 ± 1.22 mm; P ≤ 0.001) exceeded SPM (1.5 ± 0.75 mm; P ≤ 0.01) and ANTs (1.1 ± 0.54 mm). Finally, a set of 12 final brainstem ROIs with dice coefficient ≥0.50, as a step toward the development of a functional brainstem atlas. DATA CONCLUSION: The FIBS protocol yielded more robust brainstem CAN results and outperformed both the HCP and ABCD protocols. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 1.

3.
J Psychiatr Res ; 169: 192-200, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38042058

RESUMEN

Ongoing stress results in hippocampal neuro-structural alterations which produce pathological consequences, including depression and suicidality. Ketamine may ameliorate stress related illnesses, including suicidality, via neuroplasticity processes. This novel study sought to determine whether oral ketamine treatment specifically affects hippocampal (whole and subfield) volumes in patients with chronic suicidality and MDD. It was hypothesised that oral ketamine treatment would differentially alter hippocampal volumes in trial participants categorised as ketamine responders, versus those who were non-responders. Twenty-eight participants received 6 single, weekly doses of oral ketamine (0.5-3 mg/kg) and underwent MRI scans at pre-ketamine (week 0), post-ketamine (week 6), and follow up (week 10). Hippocampal subfield volumes were extracted using the longitudinal pipeline in FreeSurfer. Participants were grouped according to ketamine response status and then compared in terms of grey matter volume (GMV) changes, among 10 hippocampal regions, over 6 and 10 weeks. Mixed ANOVAs were used to analyse interactions between time and group. Post treatment analysis revealed a significant main effect of group for three left hippocampal GMVs as well in the left and right whole hippocampus. Ketamine acute responders (Week 6) showed increased GMVs in both left and right whole hippocampus and in three subfields compared to acute non-responders, across all three timepoints, suggesting that pre-treatment increased hippocampal GMVs (particularly left hemisphere) may be predictive biomarkers of acute treatment response. Future studies should further investigate the potential of hippocampal volumes as a biomarker of ketamine treatment response.


Asunto(s)
Ketamina , Suicidio , Humanos , Ketamina/farmacología , Hipocampo , Lóbulo Temporal , Imagen por Resonancia Magnética/métodos , Tamaño de los Órganos
5.
J Pers Med ; 13(5)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37241042

RESUMEN

The brain is the most complex organ in the human body, making it susceptible to many abnormalities [...].

6.
Sleep Med Rev ; 69: 101771, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36948138

RESUMEN

Patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) often report disrupted and unrefreshing sleep in association with worsened fatigue symptoms. However, the nature and magnitude of sleep architecture alteration in ME/CFS is not known, with studies using objective sleep measures in ME/CFS generating contradictory results. The current manuscript aimed to review and meta-analyse of case-control studies with objective sleep measures in ME/CSF. A search was conducted in PubMed, Scopus, Medline, Google Scholar, and Psychoinfo databases. After review, 24 studies were included in the meta-analysis, including 20 studies with 801 adults (ME/CFS = 426; controls = 375), and 4 studies with 477 adolescents (ME/CFS = 242; controls = 235), who underwent objective measurement of sleep. Adult ME/CFS patients spend longer time in bed, longer sleep onset latency, longer awake time after sleep onset, reduced sleep efficiency, decreased stage 2 sleep, more Stage 3, and longer rapid eye movement sleep latency. However, adolescent ME/CFS patients had longer time in bed, longer total sleep time, longer sleep onset latency, and reduced sleep efficiency. The meta-analysis results demonstrate that sleep is altered in ME/CFS, with changes seeming to differ between adolescent and adults, and suggesting sympathetic and parasympathetic nervous system alterations in ME/CFS.


Asunto(s)
Síndrome de Fatiga Crónica , Adulto , Adolescente , Humanos , Sueño , Sueño REM , Latencia del Sueño , Duración del Sueño
7.
J Affect Disord ; 331: 92-100, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-36963514

RESUMEN

BACKGROUND: Ketamine has recently been proposed as a treatment option for suicidality. Whilst its mechanism of action has been explored at molecular levels, the effect on the brain at the organ level remains unclear. Here we investigate immediate post-treatment and prolonged large-scale resting-state neural network changes to elucidate the neuronal underpinnings associated with ketamine's therapeutic effects. METHODS: Twenty-eight adults (aged 22-72 years) participated in the Oral Ketamine Trial On Suicidality, which is an open-label trial of weekly sub-anaesthetic doses of oral ketamine over 6 weeks. MRI was acquired at baseline, post-treatment, and follow-up. Functional connectivity changes at post-treatment and follow-up were examined using seed based and independent component analysis. RESULTS: The seed-based connectivity analysis revealed significantly reduced connectivity at post-treatment from the right hippocampus to both right and left superior frontal gyrus, from the left anterior parahippocampus to right superior frontal gyrus, left superior frontal gyrus, right middle frontal gyrus, and left frontal operculum cortex. Compared with baseline, the ICA showed reduced anterior default mode network connectivities to bilateral posterior cingulate cortex, middle and anterior cingulate cortex, lingual gyrus, and cuneus and increased connectivity of the frontoparietal network to the right superior parietal lobule at post-treatment. LIMITATIONS: Open label pilot study. CONCLUSIONS: We have shown sub-anaesthetic doses of ketamine alters connectivity in networks which have been shown to be aberrantly hyper-connected in numerous psychiatric conditions. These neurocircuitry changes are supported by significant reductions in suicide ideation. Our results provide support for the use of ketamine as a treatment for suicidality.


Asunto(s)
Ketamina , Suicidio , Adulto , Humanos , Ketamina/uso terapéutico , Proyectos Piloto , Encéfalo/diagnóstico por imagen , Lóbulo Frontal , Imagen por Resonancia Magnética/métodos
8.
Front Neurol ; 13: 954142, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36188362

RESUMEN

Introduction: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), is a debilitating illness affecting up to 24 million people worldwide but concerningly there is no known mechanism for ME/CFS and no objective test for diagnosis. A series of our neuroimaging findings in ME/CFS, including functional MRI (fMRI) signal characteristics and structural changes in brain regions particularly sensitive to hypoxia, has informed the hypothesis that abnormal neurovascular coupling (NVC) may be the neurobiological origin of ME/CFS. NVC is a critical process for normal brain function, in which glutamate from an active neuron stimulates Ca2+ influx in adjacent neurons and astrocytes. In turn, increased Ca2+ concentrations in both astrocytes and neurons trigger the synthesis of vascular dilator factors to increase local blood flow assuring activated neurons are supplied with their energy needs.This study investigates NVC using multimodal MRIs: (1) hemodynamic response function (HRF) that represents regional brain blood flow changes in response to neural activities and will be modeled from a cognitive task fMRI; (2) respiration response function (RRF) represents autoregulation of regional blood flow due to carbon dioxide and will be modeled from breath-holding fMRI; (3) neural activity associated glutamate changes will be modeled from a cognitive task functional magnetic resonance spectroscopy. We also aim to develop a neuromarker for ME/CFS diagnosis by integrating the multimodal MRIs with a deep machine learning framework. Methods and analysis: This cross-sectional study will recruit 288 participants (91 ME/CFS, 61 individuals with chronic fatigue, 91 healthy controls with sedentary lifestyles, 45 fibromyalgia). The ME/CFS will be diagnosed by consensus diagnosis made by two clinicians using the Canadian Consensus Criteria 2003. Symptoms, vital signs, and activity measures will be collected alongside multimodal MRI.The HRF, RRF, and glutamate changes will be compared among four groups using one-way analysis of covariance (ANCOVA). Equivalent non-parametric methods will be used for measures that do not exhibit a normal distribution. The activity measure, body mass index, sex, age, depression, and anxiety will be included as covariates for all statistical analyses with the false discovery rate used to correct for multiple comparisons.The data will be randomly divided into a training (N = 188) and a validation (N = 100) group. Each MRI measure will be entered as input for a least absolute shrinkage and selection operator-regularized principal components regression to generate a brain pattern of distributed clusters that predict disease severity. The identified brain pattern will be integrated using multimodal deep Boltzmann machines as a neuromarker for predicting ME/CFS fatigue conditions. The receiver operating characteristic curve of the identified neuromarker will be determined using data from the validation group. Ethics and study registry: This study was reviewed and approved by University of the Sunshine Coast University Ethics committee (A191288) and has been registered with The Australian New Zealand Clinical Trials Registry (ACTRN12622001095752). Dissemination of results: The results will be disseminated through peer reviewed scientific manuscripts and conferences and to patients through social media and active engagement with ME/CFS associations.

9.
Data Brief ; 43: 108454, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35864878

RESUMEN

We provided the dataset of brain connectome matrices, their similarities measures to self and others longitudinally, and Kessler's psychological distress scales (K10) including the response to each question. The dataset can be used to replicate the results of the manuscript titled "A longitudinal study of functional connectome uniqueness and its association with psychological distress in adolescence". The functional connectome (whole-brain and 13 networks) matrices were calculated from the resting-state functional MRIs (rs-fMRIs). We collected rs-fMRI and Kessler's psychological distress scale (K10) in 77 adolescents longitudinally up to 9 times from 12 years of age every four months. After removal of data with excessive motion, 262 functional connectome matrices were provided with this paper. The 300 regions of interest (ROIs) were defined using the Greene lab brain atlas. The functional connectome matrices were calculated as correlations between time series from any pair of ROIs extracted from pre-processed fMRIs. This dataset could be potentially used to1.Understand developmental changes in the functional brain connectivity,2.As a normal control database of functional connectome matrices,3.Develop and validate connectome and network-related analysing methods.

10.
Neuroimage ; 258: 119358, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35700948

RESUMEN

Each human brain has a unique functional synchronisation pattern (functional connectome) analogous to a fingerprint that underpins brain functions and related behaviours. Here we examine functional connectome (whole-brain and 13 networks) maturation by measuring its uniqueness in adolescents who underwent brain scans longitudinally from 12 years of age every four months. The uniqueness of a functional connectome is defined as its ratio of self-similarity (from the same subject at a different time point) to the maximal similarity-to-others (from a given subject and any others at a different time point). We found that the unique whole brain connectome exists in 12 years old adolescents, with 92% individuals having a whole brain uniqueness value greater than one. The cingulo-opercular network (CON; a long-acting 'brain control network' configuring information processing) demonstrated marginal uniqueness in early adolescence with 56% of individuals showing uniqueness greater than one (i.e., more similar to her/his own CON four months later than those from any other subjects) and this increased longitudinally. Notably, the low uniqueness of the CON correlates (ß = -18.6, FDR-Q < < 0.001) with K10 levels at the subsequent time point. This association suggests that the individualisation of CON network is related to psychological distress levels. Our findings highlight the potential of longitudinal neuroimaging to capture mental health problems in young people who are undergoing profound neuroplasticity and environment sensitivity period.


Asunto(s)
Conectoma , Distrés Psicológico , Adolescente , Encéfalo/diagnóstico por imagen , Niño , Conectoma/métodos , Femenino , Humanos , Lactante , Estudios Longitudinales , Imagen por Resonancia Magnética , Red Nerviosa
11.
Neurosci Lett ; 781: 136655, 2022 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-35469821

RESUMEN

BACKGROUND: Developmental stuttering is thought to be underpinned by structural impairments in the brain. The only way to support the claim that these are causal is to determine if they are present before onset. MATERIALS AND METHODS: Magnetic resonance imaging (MRI) was conducted on 18 neonates, aged 8-18 weeks, 6 of whom were determined to be genetically at risk of stuttering. RESULTS: With tract-based spatial statistics (TBSS) analysis, no statistically significant differences were found between the at-risk group and the control group. However, fractional anisotropy (FA), mean diffusivity (MD), and radial diffusivity (RD) in the corpus callosum of the at-risk group were lower (uncorrected) than in the control group. Automated Fiber Quantification (AFQ) yielded lower FA in the at-risk group than in the control group in the medial section of the callosum forceps minor. DISCUSSION: The findings, albeit with a small number of participants, support the proposition that reduced integrity of white matter in the corpus callosum has a causal role in developmental stuttering. Longitudinal research to determine if children with this impairment at birth later start to stutter is needed to confirm this. The left arcuate fasciculus is thought to develop as speech develops, which likely explains why there were no abnormal findings in this area in our at-risk neonates so soon after birth. This is the first study to investigate the brains of children before the onset of stuttering, and the findings warrant further research.


Asunto(s)
Tartamudeo , Sustancia Blanca , Anisotropía , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Niño , Cuerpo Calloso/diagnóstico por imagen , Cuerpo Calloso/patología , Imagen de Difusión Tensora/métodos , Humanos , Recién Nacido , Datos Preliminares , Tartamudeo/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología
12.
J Transl Med ; 18(1): 335, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32873297

RESUMEN

BACKGROUND: Since the 1990s, neuroimaging has been utilised to study Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), a debilitating illness with unknown aetiology. While brain abnormalities in ME/CFS have been identified, relatively little is known regarding which specific abnormalities are consistently observed across research groups and to what extent the observed abnormalities are reproducible. METHOD: To identify consistent and inconsistent neuroimaging observations in ME/CFS, this retrospective and systematic review searched for studies in which neuroimaging was used to investigate brain abnormalities in ME/CFS in Ovid MEDLINE, PubMed (NCBI), and Scopus from January 1988 to July 2018. A qualitative synthesis of observations was performed to identify brain abnormalities that were consistently and inconsistently reported. RESULTS: 63 full-text articles were included in the synthesis of results from 291 identified papers. Additional brain area recruitment for cognitive tasks and abnormalities in the brain stem are frequent observations in 11 and 9 studies using different modalities from different research teams respectively. Also, sluggish blood oxygenation level-dependent (BOLD) signal responses to tasks, reduced serotonin transporters, and regional hypometabolism are consistent observations by more than two research teams. Single observations include abnormal brain tissue properties, regional metabolic abnormalities, and association of brain measures with ME/CFS symptoms. Reduced resting cerebral blood flow and volumetric brain changes are inconsistent observations across different studies. CONCLUSION: Neuroimaging studies of ME/CFS have frequently observed additional brain area recruitment during cognitive tasks and abnormalities in the brain stem. The frequent observation of additional brain area recruitment and consistent observation of sluggish fMRI signal response suggest abnormal neurovascular coupling in ME/CFS.


Asunto(s)
Síndrome de Fatiga Crónica , Encéfalo/diagnóstico por imagen , Síndrome de Fatiga Crónica/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Neuroimagen , Estudios Retrospectivos
13.
Neuroimage Clin ; 24: 102045, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31671321

RESUMEN

In myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS), abnormal MRI correlations with symptom severity and autonomic measures have suggested impaired nerve signal conduction within the brainstem. Here we analyse fMRI correlations to directly test connectivity within and from the brainstem. Resting and task functional MRI (fMRI) were acquired for 45 ME/CFS (Fukuda criteria) and 27 healthy controls (HC). We selected limited brainstem reticular activation system (RAS) regions-of-interest (ROIs) based on previous structural MRI findings in a different ME/CFS cohort (bilateral rostral medulla and midbrain cuneiform nucleus), the dorsal Raphe nucleus, and two subcortical ROIs (hippocampus subiculum and thalamus intralaminar nucleus) reported to have rich brainstem connections. When HC and ME/CFS were analysed separately, significant correlations were detected for both groups during both rest and task, with stronger correlations during task than rest. In ME/CFS, connections were absent between medulla and midbrain nuclei, although hippocampal connections with these nuclei were enhanced. When corresponding correlations from HC and ME/CFS were compared, ME/CFS connectivity deficits were detected within the brainstem between the medulla and cuneiform nucleus and between the brainstem and hippocampus and intralaminar thalamus, but only during task. In CFS/ME, weaker connectivity between some RAS nuclei was associated with increased symptom severity. RAS neuron oscillatory signals facilitate coherence in thalamo-cortical oscillations. Brainstem RAS connectivity deficits can explain autonomic changes and diminish cortical oscillatory coherence which can impair attention, memory, cognitive function, sleep quality and muscle tone, all symptoms of ME/CFS.


Asunto(s)
Tronco Encefálico/diagnóstico por imagen , Síndrome de Fatiga Crónica/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen , Adulto , Atención/fisiología , Función Ejecutiva/fisiología , Síndrome de Fatiga Crónica/psicología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Pruebas Neuropsicológicas , Descanso
14.
Neuroimage Clin ; 20: 102-109, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30497131

RESUMEN

We recruited 43 Chronic Fatigue Syndrome (CFS) subjects who met Fukuda criteria and 27 healthy controls and performed 3T MRI T1 and T2 weighted spin-echo (T1wSE and T2wSE) scans. T1wSE signal follows T1 relaxation rate (1/T1 relaxation time) and responds to myelin and iron (ferritin) concentrations. We performed MRI signal level group comparisons with SPM12. Spatial normalization after segmentation was performed using T2wSE scans and applied to the coregistered T1wSE scans. After global signal-level normalization of individual scans, the T1wSE group comparison detected decreased signal-levels in CFS in a brainstem region (cluster-based inference controlled for family wise error rate, PFWE= 0.002), and increased signal-levels in large bilateral clusters in sensorimotor cortex white matter (cluster PFWE < 0.0001). Moreover, the brainstem T1wSE values were negatively correlated with the sensorimotor values for both CFS (R2 = 0.31, P = 0.00007) and healthy controls (R2 = 0.34, P = 0.0009), and the regressions were co-linear. This relationship, previously unreported in either healthy controls or CFS, in view of known thalamic projection-fibre plasticity, suggests brainstem conduction deficits in CFS may stimulate the upregulation of myelin in the sensorimotor cortex to maintain brainstem - sensorimotor connectivity. VBM did not find group differences in regional grey matter or white matter volumes. We argued that increased T1wSE observed in sensorimotor WM in CFS indicates increased myelination which is a regulatory response to deficits in the brainstem although the causality cannot be tested in this study. Altered brainstem myelin may have broad consequences for cerebral function and should be a focus of future research.


Asunto(s)
Tronco Encefálico/patología , Síndrome de Fatiga Crónica/diagnóstico por imagen , Sustancia Gris/patología , Imagen por Resonancia Magnética , Vaina de Mielina/patología , Adulto , Síndrome de Fatiga Crónica/fisiopatología , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Sustancia Blanca/patología , Adulto Joven
15.
Neuroimage Clin ; 19: 279-286, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30035022

RESUMEN

The mechanism underlying neurological dysfunction in chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is yet to be established. This study investigated the temporal complexity of blood oxygenation level dependent (BOLD) changes in response to the Stroop task in CFS patients. 43 CFS patients (47.4 ±â€¯11.8 yrs) and 26 normal controls (NCs, 43.4 ±â€¯13.9 yrs) were included in this study. Their mental component summary (MCS) and physical component summary (PCS) from the 36-item Short Form Health Survey (SF-36) questionnaire were recorded. Their Stroop colour-word task performance was measured by accuracy and response time (RT). The BOLD changes associated with the Stroop task were evaluated using a 2-level general linear model approach. The temporal complexity of the BOLD responses, a measure of information capacity and thus adaptability to a challenging environment, in each activated region was measured by sample entropy (SampEn). The CFS patients showed significantly longer RTs than the NCs (P < 0.05) but no significant difference in accuracy. One sample t-tests for the two groups (Family wise error adjusted PFWE < 0.05) showed more BOLD activation regions in the CFS, although a two sample group comparison did not show significant difference. BOLD SampEns in ten regions were significantly lower (FDR-q < 0.05) in CFS patients. BOLD SampEns in 15 regions were significantly associated with PCS (FDR-q < 0.05) and in 9 regions were associated with MCS (FDR-q < 0.05) across all subjects. SampEn of the BOLD signal in the medioventral occipital cortex could explain 40% and 31% of the variance in the SF-36 PCS and MCS scores, and those in the precentral gyrus could explain an additional 16% and 7% across all subjects. This is the first study to investigate BOLD signal SampEn in response to tasks in CFS. The results suggest the brain responds differently to a cognitive challenge in patients with CFS, with recruitment of wider regions to compensate for lower information capacity.


Asunto(s)
Encéfalo/diagnóstico por imagen , Síndrome de Fatiga Crónica/diagnóstico por imagen , Adulto , Síndrome de Fatiga Crónica/psicología , Femenino , Humanos , Modelos Lineales , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Tiempo de Reacción/fisiología , Encuestas y Cuestionarios
16.
Brain Connect ; 8(1): 33-39, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29152994

RESUMEN

The chronic fatigue syndrome (CFS)/myalgic encephalomyelitis is a debilitating disease with unknown pathophysiology and no diagnostic test. This study investigated the default mode network (DMN) to understand the pathophysiology of CFS and to identify potential biomarkers. Using functional MRI (fMRI) collected from 72 subjects (45 CFS and 27 controls) with a temporal resolution of 0.798 sec, we evaluated the DMN using static functional connectivity (FC), dynamic functional connectivity (DFC) and DFC complexity, blood oxygenation level dependent (BOLD) activation maps, and complexity of activity. General linear model univariate analysis was used for intergroup comparison to account for age and gender differences. Hierarchical regression analysis was used to test whether fMRI measures could be used to explain variances of health scores. BOLD signals in the posterior cingulate cortex (PCC), the driving hub in the DMN, were more complex in CFS in both resting state and task (p < 0.05). The FCs between medial prefrontal cortex (mPFC) and both inferior parietal lobules (IPLs) were weaker (p < 0.05) during resting state, whereas during task mPFC-left IPL and mPFC-PCC were weaker (p < 0.05). The DFCs between the DMN hubs were more complex in CFS (p < 0.05) during task. Each of these differences accounted for 7-11% variability of health scores. This study showed that DMN activity is more complex and less coordinated in CFS, suggesting brain network analysis could be potentially used as a diagnostic biomarker for CFS.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Síndrome de Fatiga Crónica/diagnóstico por imagen , Síndrome de Fatiga Crónica/fisiopatología , Imagen por Resonancia Magnética , Oxígeno/sangre , Adulto , Atención/fisiología , Mapeo Encefálico/métodos , Circulación Cerebrovascular , Femenino , Humanos , Modelos Lineales , Masculino , Persona de Mediana Edad , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiopatología , Análisis de Regresión , Test de Stroop , Adulto Joven
17.
NMR Biomed ; 30(10)2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28661067

RESUMEN

Unrefreshing sleep is a hallmark of chronic fatigue syndrome/myalgic encephalomyelitis (CFS). This study examined brain structure variations associated with sleep quality in patients with CFS. 38 patients with CFS (34.8 ± 10.1 years old) and 14 normal controls (NCs) (34.7 ± 8.4 years old) were recruited. All subjects completed the Hospital Anxiety and Depression Scale, Pittsburgh Sleep Quality Index (PSQI), and Chalder Fatigue Scale (CFQ) questionnaires. Brain MRI measures included global and regional grey and white matter volumes, magnetization transfer T1 weighted (MT-T1w) intensities, and T1 weighted (T1w) and T2 weighted spin echo signal intensities. We performed voxel based group comparisons of these regional brain MRI measures and regressions of these measures with the PSQI and CFQ scales adjusted for age, anxiety and depression, and the appropriate global measure. In CFS patients, negative correlations were observed in the medial prefrontal cortex (mPFC) between PSQI and MT-T1w intensities (family-wise error corrected cluster, PFWE  < 0.05) and between PSQI and T1w intensities (PFWE  < 0.05). In the same mPFC location, both MT and T1w intensities were lower in CFS patients compared with NCs (uncorrected voxel P < 0.001). This study is the first to report that brain structural differences are associated with unrefreshing sleep in CFS. This result refutes the suggestion that unrefreshing sleep is a misperception in CFS patients and further investigation of this symptom is warranted.


Asunto(s)
Síndrome de Fatiga Crónica/fisiopatología , Corteza Prefrontal/fisiopatología , Sueño/fisiología , Adulto , Estudios de Casos y Controles , Femenino , Sustancia Gris/fisiopatología , Humanos , Masculino , Tamaño de los Órganos , Análisis de Regresión , Estadística como Asunto , Sustancia Blanca/fisiopatología
18.
J Magn Reson Imaging ; 44(5): 1301-1311, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27123773

RESUMEN

PURPOSE: To examine progressive brain changes associated with chronic fatigue syndrome (CFS). MATERIALS AND METHODS: We investigated progressive brain changes with longitudinal MRI in 15 CFS and 10 normal controls (NCs) scanned twice 6 years apart on the same 1.5 Tesla (T) scanner. MR images yielded gray matter (GM) volumes, white matter (WM) volumes, and T1- and T2-weighted signal intensities (T1w and T2w). Each participant was characterized with Bell disability scores, and somatic and neurological symptom scores. We tested for differences in longitudinal changes between CFS and NC groups, inter group differences between pooled CFS and pooled NC populations, and correlations between MRI and symptom scores using voxel based morphometry. The analysis methodologies were first optimized using simulated atrophy. RESULTS: We found a significant decrease in WM volumes in the left inferior fronto-occipital fasciculus (IFOF) in CFS while in NCs it was unchanged (family wise error adjusted cluster level P value, PFWE < 0.05). This longitudinal finding was consolidated by the group comparisons which detected significantly decreased regional WM volumes in adjacent regions (PFWE < 0.05) and decreased GM and blood volumes in contralateral regions (PFWE < 0.05). Moreover, the regional GM and WM volumes and T2w in those areas showed significant correlations with CFS symptom scores (PFWE < 0.05). CONCLUSION: The results suggested that CFS is associated with IFOF WM deficits which continue to deteriorate at an abnormal rate. J. Magn. Reson. Imaging 2016;44:1301-1311.


Asunto(s)
Envejecimiento/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Progresión de la Enfermedad , Síndrome de Fatiga Crónica/diagnóstico por imagen , Síndrome de Fatiga Crónica/patología , Interpretación de Imagen Asistida por Computador/métodos , Adulto , Femenino , Humanos , Estudios Longitudinales , Masculino , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Técnica de Sustracción , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA